Yapay Zeka Veri Zehirlenmesi Nedir? - Technopat
Sonuç bulunamadı
Bütün Sonuçları Göster
Teknoloji tutkunu Technopatların ortak adresi: Technopat.net
  • Haber
  • Yapay Zeka
  • Tavsiyeler
  • Oyun
  • Video
  • Teknoloji
    • Mobil
    • Nasıl Yapılır
    • Yazılım
    • Elektronik Alışveriş Fırsatları
    • Pratik
    • Ev Teknolojileri
    • Makale
    • Güvenlik
    • Ekonomi
    • İnternet
    • Giyilebilir Teknoloji
    • Sağlık
    • Yazıcı
    • Sosyal Medya
    • Otomobil
      • Elektrikli Otomobil
  • Sosyal
Teknoloji tutkunu Technopatların ortak adresi: Technopat.net
  • Haber
  • Yapay Zeka
  • Tavsiyeler
  • Oyun
  • Video
  • Teknoloji
    • Mobil
    • Nasıl Yapılır
    • Yazılım
    • Elektronik Alışveriş Fırsatları
    • Pratik
    • Ev Teknolojileri
    • Makale
    • Güvenlik
    • Ekonomi
    • İnternet
    • Giyilebilir Teknoloji
    • Sağlık
    • Yazıcı
    • Sosyal Medya
    • Otomobil
      • Elektrikli Otomobil
  • Sosyal
Sonuç bulunamadı
Bütün Sonuçları Göster
Teknoloji tutkunu Technopatların ortak adresi: Technopat.net

Anasayfa - Haber - Gündem - Yapay Zeka Veri Zehirlenmesi Nedir?

Yapay Zeka Veri Zehirlenmesi Nedir?

3 Şubat 2025 - 13:30
- Gündem
Yapay Zeka Veri Zehirlenmesi

Yapay zekâ asistanınıza güvenmeden önce iki kez düşünmelisiniz zira veri tabanı zehirlenmesi asistanınızın çıktılarını önemli ölçüde hatta tehlikeli bir şekilde değiştirebilir.  Siber güvenlik şirketi ESET güvenlik, gizlilik ve güvenden ödün vermeden yapay zekânın potansiyelini nasıl ortaya çıkarabilirizi araştırdı, önerilerini paylaştı.

Sürekli ortaya çıkan sayısız güvenlik açığından da görebileceğimiz gibi modern teknoloji kusursuz olmaktan çok uzak. Tasarım açısından güvenli sistemler tasarlamak denenmiş ve doğrulanmış bir en iyi uygulama olsa da bunu yapmak kaynakları kullanıcı deneyimi (UX) tasarımı, performans optimizasyonu ve diğer çözümler ve hizmetlerle birlikte çalışabilirlik gibi diğer alanlardan uzaklaştırabilir. Bu nedenle, güvenlik genellikle arka planda kalır ve yalnızca asgari uyumluluk gerekliliklerini yerine getirir. Bu değiş tokuş özellikle hassas veriler söz konusu olduğunda endişe verici hale gelir çünkü bu tür veriler kritiklikleriyle orantılı korumalar gerektirir. Günümüzde, yetersiz güvenlik önlemlerinin riskleri, verilerin işlevselliklerinin temelini oluşturduğu yapay zekâ ve makine öğrenimi (AI/ML) sistemlerinde giderek daha belirgin hale gelmektedir.

Veri zehirlenmesi nedir?

Yapay zekâ ve makine öğrenimi modelleri, denetimli ve denetimsiz öğrenme yoluyla sürekli olarak güncellenen temel eğitim veri kümeleri üzerine inşa edilir. Makine öğrenimi yapay zekânın gelişmesinde önemli rol oynar. Makine öğrenimi sayesinde gerçekleşen derin öğrenme, diğer etkenlerle birlikte yapay zekânın yeteneklerini ilerletmesini mümkün kılar. Veriler ne kadar çeşitli ve güvenilir olursa modelin çıktıları da o kadar doğru ve kullanışlı olacaktır. Bu nedenle, eğitim sırasında bu modellerin büyük miktarda veriye erişmesi gerekir. Öte yandan, doğrulanmamış veya iyi incelenmemiş veri kümeleri güvenilmez sonuçların ortaya çıkma olasılığını artırdığından veri yığınlarına güvenmek riskleri de beraberinde getirmektedir. Üretken yapay zekânın, özellikle de büyük dil modellerinin (LLM’ler) ve bunların yapay zekâ asistanları şeklindeki uzantılarının, modelleri kötü niyetli amaçlarla kurcalayan saldırılara karşı özellikle savunmasız olduğu bilinmektedir.  En sinsi tehditlerden biri, düşmanların modelin davranışını değiştirmeye çalıştığı ve yanlış, önyargılı ve hatta zararlı çıktılar üretmesine neden olduğu veri (veya veri tabanı) zehirlenmesidir. Bu tür tahrifatların sonuçları uygulamalar arasında dalgalanarak güveni sarsabilir ve hem insanlar hem de kuruluşlar için sistemik riskler doğurabilir.

Veri zehirlenmesi türleri

Veri zehirleme saldırılarının çeşitli türleri vardır, örneğin:

  • Veri enjeksiyonu: Saldırganlar, bir yapay zekâ modelinin davranışını değiştirmesini sağlamak için eğitim verilerine kötü amaçlı veri noktaları enjekte eder. Çevrimiçi kullanıcıların Tay Twitter botunu saldırgan tweetler atacak şekilde yavaşça değiştirmesi buna iyi bir örnektir.
  • İçeriden saldırılar: Normal içeriden tehditlerde olduğu gibi, çalışanlar erişimlerini kötüye kullanarak bir modelin eğitim setini değiştirebilir, davranışını değiştirmek için parça parça değiştirebilirler. İçeriden saldırılar özellikle sinsidir çünkü meşru erişimden faydalanırlar.
  • Tetikleyici enjeksiyonu: Bu saldırı, bir tetikleyici oluşturmak için yapay zekâ modelinin eğitim setine veri enjekte eder. Bu, saldırganların bir modelin güvenliğini aşmasına ve belirlenen tetikleyiciye göre durumlarda çıktısını manipüle etmesine olanak tanır. Bu saldırının tespit edilmesindeki zorluk, tetikleyicinin tespit edilmesinin zor olabilmesinin yanı sıra tetikleyici etkinleştirilene kadar tehdidin uykuda kalmasıdır.
  • Tedarik zinciri saldırısı: Bu saldırıların etkileri özellikle korkunç olabilir. Yapay zekâ modelleri genellikle üçüncü taraf bileşenleri kullandığından tedarik zinciri sürecinde ortaya çıkan güvenlik açıkları sonuçta modelin güvenliğini tehlikeye atabilir ve onu istismara açık hale getirebilir.

Yapay zekâ modelleri hem iş hem de tüketici sistemlerine derinlemesine gömüldükçe asistanlar veya verimlilik artırıcılar olarak hizmet verdikçe bu sistemleri hedef alan saldırılar önemli bir endişe kaynağı haline geliyor. Kurumsal yapay zekâ modelleri verileri üçüncü taraflarla paylaşmasa da çıktılarını iyileştirmek için şirket içi verileri silip süpürmeye devam ediyor. Bunu yapmak için hassas bilgi hazinesine erişmeleri gerekir, bu da onları yüksek değerli hedefler haline getirir. Genellikle hassas verilerle dolu olan kullanıcı komutlarını diğer taraflarla paylaşan tüketici modelleri için riskler daha da artmaktadır.

Makine öğrenimi ve yapay zekâ gelişimi nasıl güvence altına alınır?

ML/AI modelleri için önleyici stratejiler hem geliştiricilerin hem de kullanıcıların farkındalığını gerektirir. Temel stratejiler şunları içerir:

  • Sürekli kontroller ve denetimler: Kötü niyetli manipülasyon veya önyargılı verilerin onları tehlikeye atmasını önlemek için AI/ML modellerini besleyen veri kümelerinin bütünlüğünü sürekli olarak kontrol etmek ve doğrulamak önemlidir.
  • Güvenliğe odaklanın: Yapay zekâ geliştiricilerinin kendileri de saldırganların hedefinde olabilir, bu nedenle proaktif önleme, erken tespit ve sistemik güvenlik kontrolleri ile saldırı yüzeyini en aza indirmeye yönelik önleme öncelikli bir yaklaşım sağlayabilecek bir güvenlik kurulumuna sahip olmak, güvenli geliştirme için olmazsa olmazdır.
  • Çekişmeli eğitim: Daha önce de belirtildiği gibi, modeller genellikle öğrenmelerini yönlendirmek için profesyoneller tarafından denetlenir. Aynı yaklaşım, modellere kötü niyetli ve geçerli veri noktaları arasındaki farkı öğretmek için de kullanılabilir ve sonuçta zehirleme saldırılarının engellenmesine yardımcı olur.
  • Sıfır güven ve erişim yönetimi: Hem içeriden hem de dışarıdan gelen tehditlere karşı savunmak için bir modelin temel verilerine yetkisiz erişimi izleyebilen bir güvenlik çözümü kullanın. Bu şekilde şüpheli davranışlar daha kolay tespit edilebilir ve önlenebilir. Ek olarak, sıfır güven ile hiç kimseye varsayılan olarak güvenilmez ve erişim izni verilmeden önce birden fazla doğrulama yapılması gerekir.
Etiketler: esetVeri Zehirlenmesiyapay zeka
PaylaşPaylaşTweetYollaPaylaş
Asım Demir

Asım Demir

Technopat.Net Haber Editörü

Yorum Yap Yanıtı iptal et

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

RSS Technopat Sosyal

  • DeathAdder V3 Pro vs Viper V3 Pro
  • Huawei MatePad 11.5 2025 Papermatte ve M-Pencil 3. Nesil
  • AMD RX 5000 ve 6000 serisinin sürücü desteği sona erdi!
  • RX 6900 XT Ryzen 5 5600 için PSU önerisi
  • Psikiyatri tanısı ve ilaç kullanımı pilotluğa engel mi?
  • RTX 3060 R7-7800x3D alınır mı?
  • Steam indirme hızı 100Mbps'den 20'ye düştü
  • RTX 4070 RDR 2 Ultra ayarlarda 50-60 FPS alıyor
  • 6.500TL drone önerisi
  • Aynı model ama farklı zaman değerine sahip RAM'ler kullanılır mı?

Technopat Video

Şu an oynayan

Efsane geri döndü! HyperX Cloud IIIS Wireless inceleme

HyperX Cloud IIIS Wireless İncelemesi – 6000 TL’ye En Rahat Oyuncu Kulaklığı!

Efsane geri döndü! HyperX Cloud IIIS Wireless inceleme

Giyilebilir Teknoloji
Apple AirPods Pro 3 ve AirPods Pro 2 karşı karşıya

AirPods Pro 3 detaylı inceleme ve uzun kulanım testi

Giyilebilir Teknoloji
spotify apple

Spotify Apple’ın oyununu bozdu: Müzik savaşında ipler kimde?

Ekonomi

Teknoloji tutkunu Technopatların ortak adresi: Technopat.net!

Güncel teknoloji, internet, donanım, yazılım, oyun ve daha fazlası haber, makale ve videolar ile Technopat’ta sizlerle.


01010100 01100101 01100011 01101000 01101110 01101111 01110000 01100001 01110100

Kategoriler

  • Yapay Zeka
  • Ev Teknolojileri
  • Makale
  • Video

Sosyal Medya

Bağlantılar

  • Hakkında
  • Haber
  • Video
  • Sosyal
  • Çerez Politikası
© 2011-2025 Technopat. Tüm Hakları Saklıdır.
Netse
Çerez Onayı
Web sitemizi ziyaret ettiğinizde, kullanıcı deneyiminizi daha iyi hale getirmek, hizmetlerimizi size daha etkin bir şekilde sunabilmek için çerezler (cookies) ve benzeri araçlar kullanıyoruz. Çerezler, internet sitesinin düzgün çalışmasını sağlamak, içeriği kişiselleştirmek, sosyal medya özellikleri sağlamak ve trafik analizi yapmak için kullanılan küçük metin dosyalarıdır. Çerezleri nasıl kullandığımız ve kişisel verilerinizi nasıl işlediğimiz hakkında daha fazla bilgi almak için çerez politikamızı ve kişisel veri politikamızı inceleyebilirsiniz.
Fonksiyonel Her zaman aktif
Teknik depolama veya erişim, sadece kullanıcının açıkça talep ettiği belirli bir hizmetin kullanılmasını sağlama amacıyla veya iletişimin elektronik iletişim ağı üzerinden iletilmesinin tek amacıyla yasal olarak kesinlikle gereklidir.
Tercihler
Teknik depolama veya erişim, abone veya kullanıcı tarafından istenmeyen tercihlerin depolanması yasal amacıyla gereklidir.
İstatistikler
Sadece istatistiksel amaçlarla kullanılan teknik depolama veya erişim. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Pazarlama
Teknik depolama veya erişim, reklam gönderimi için kullanıcı profilleri oluşturmak veya kullanıcıyı bir web sitesinde veya birden fazla web sitesinde benzer pazarlama amaçları için takip etmek amacıyla gereklidir.
  • Seçenekleri yönet
  • Hizmetleri yönetin
  • {vendor_count} satıcılarını yönetin
  • Bu amaçlar hakkında daha fazla bilgi edinin
Tercihleri yönet
  • {title}
  • {title}
  • {title}
Sonuç bulunamadı
Bütün Sonuçları Göster
  • Giriş
  • Teknoloji Haberleri
  • Sosyal
  • Nasıl Yapılır
  • Yapay Zeka
  • Video
  • Tavsiyeler
  • İncelemeler
    • Video İncelemeler
  • Güvenlik
  • Oyun
  • Makale
    • Pratik
    • Yazar Köşeleri

© 2025 Technopat
Sorularınız için Technopat Sosyal