Makine Öğrenimi Modeli Nedir? - Technopat
Sonuç bulunamadı
Bütün Sonuçları Göster
Teknoloji tutkunu Technopatların ortak adresi: Technopat.net
  • Haber
  • Yapay Zeka
  • Tavsiyeler
  • Oyun
  • Video
  • Teknoloji
    • Mobil
    • Nasıl Yapılır
    • Yazılım
    • Elektronik Alışveriş Fırsatları
    • Pratik
    • Ev Teknolojileri
    • Makale
    • Güvenlik
    • Ekonomi
    • İnternet
    • Giyilebilir Teknoloji
    • Sağlık
    • Yazıcı
    • Sosyal Medya
    • Otomobil
      • Elektrikli Otomobil
  • Sosyal
Teknoloji tutkunu Technopatların ortak adresi: Technopat.net
  • Haber
  • Yapay Zeka
  • Tavsiyeler
  • Oyun
  • Video
  • Teknoloji
    • Mobil
    • Nasıl Yapılır
    • Yazılım
    • Elektronik Alışveriş Fırsatları
    • Pratik
    • Ev Teknolojileri
    • Makale
    • Güvenlik
    • Ekonomi
    • İnternet
    • Giyilebilir Teknoloji
    • Sağlık
    • Yazıcı
    • Sosyal Medya
    • Otomobil
      • Elektrikli Otomobil
  • Sosyal
Sonuç bulunamadı
Bütün Sonuçları Göster
Teknoloji tutkunu Technopatların ortak adresi: Technopat.net

Anasayfa - Makale - Makine Öğrenimi Modeli Nedir?

Makine Öğrenimi Modeli Nedir?

28 Kasım 2021 - 22:00
- Makale

Verilerle desteklenen, örüntüleri bulan algoritmaların ifadeleri olan ve bir insanın yapabileceğinden daha hızlı tahminler yapan makine öğrenimi (Machine Learning – ML) modelleri, yapay zekânın (Artificial Intelligence – AI) matematiksel motorlarıdır.

Bir araba satın almak istediğinizde akla ilk hangi model olacağı sorusu gelir. Düşük maliyetli bir ulaşım için Honda Civic mi, hızlı ve iyi bir görünüme sahip olan Chevy Corvette mi yoksa ağır yükleri taşımak için bir Ford F-150 mi?

Çağımızın en dönüştürücü teknolojisi olan yapay zekâ’ya olan yolculukta, ihtiyacınız olan motor, bir makine öğrenimi modelidir.

Makine Öğrenimi (ML) Modeli Nedir?

Bir makine öğrenimi modeli, örüntüleri bulmak veya tahminler yapmak için büyük bir veri grubunu tarayan bir algoritmanın ifadesidir. Verilerle desteklenen makine öğrenimi modelleri, yapay zekânın matematiksel motorlarıdır.

Örneğin, bilgisayar görüşü (Computer Vision) için olan bir ML modeli, arabaları ve yayaları gerçek zamanlı bir videoda tanımlayabilir. Bir diğeri, doğal dil işleme(NLP), kelimeleri ve cümleleri tercüme edebilir.

Daha yakından incelersek, bir makine öğrenimi modeli, nesnelerin ve birbirleriyle ilişkilerinin matematiksel bir temsilidir. Bu nesneler, bir sosyal ağ gönderisindeki “beğeniler”den, laboratuvar deneyindeki moleküllere kadar her şey olabilir. NVIDIA’nın geliştirici sayfasında örnek modellere göz atabilirsiniz.

Her Amaca Uygun ML Modelleri

Bir ML modelinde özellik haline gelebilecek nesneler üzerinde herhangi bir kısıtlama yoktur. Yapay zekâ (AI) kullanımlarının sınırı yoktur. Sayısız kombinasyonlar mevcuttur.

Veri bilimcileri, tüm makine öğrenimi modellerinin farklı kullanımları için aile sınıflandırması oluşturmuştur ve bu hummalı çalışmalara devam etmektedirler.

ML Modellerinin Kısa Bir Taksonomisi

ML Model Türü Kullanım Alanları
Doğrusal regresyon/sınıflandırma (Linear regression/classification) Sayısal verilerdeki örüntüler, finansal tablolar gibi
Grafik modeller Fraud tespiti veya duygusal farkındalık
Karar ağacı (Decision trees/Random forests) Sonuçları tahmin etmek
Derin öğrenme sinir ağları (Deep learning neural networks)  Bilgisayar görüşü (Computer Vision), doğal dil işleme(NLP) ve dahası.

Örneğin, doğrusal (linear) modeller, finansal projelerdeki değişkenlerin arasındaki ilişkiyi tahmin etmek için cebir kullanır. Grafik modeller, bir olasılığı diyagram olarak ifade eder, örneğin bir tüketicinin bir ürünü satın almayı seçip seçmeyeceği gibi. Dal metaforunu örnek alan bazı ML modelleri, karar ağaçlarının yada random forests(RF) olarak adlandırılan grupların şeklini alır.

2012 yılındaki Big Bang of AI ’da, araştırmacılar derin öğrenmeyi, örüntü bulma ve tahmin yürütme konusunda en başarılı tekniklerden biri olarak buldular. Bu model, beyin hücrelerinin örüntü ve işlevlerinden esinlendiği için sinir ağları (Neural Networks) adı verilen bir tür makine öğrenimi modelini kullanır.

Kitleler İçin ML Modeli

Derin Öğrenme (Deep Learning), ismini makine öğrenimi modellerinin yapısından alır. Tıpkı bir matematiksel sandviç gibi özelliklerin katman ve ilişkileri üzerine katman oluştururlar.

Örüntüleri bulmadaki olağanüstü doğruluğu sayesinde, iki tür derin öğrenme modeli her yerde karşımıza çıkıyor.

Bilgisayar görüşünde sıklıkla kullanılan evrişimli sinir ağları (CNNs), otonom araçlarda göz gibi davranır ve tıbbi görüntülemede hastalıkların tespit edilmesine yardımcı olabilir. Sözlü ve yazılı dili analiz etmek için ayarlanmış olan tekrarlayan sinir ağları ve transformatörler (RNNs), Amazon’un Alexa’sının, Google Asistanının Ve Apple Siri’nin motorlarıdır.

Derin Öğrenme Sinir Ağları
Derin öğrenme sinir ağları, adını çok katmanlı yapılarından almıştır.

Bir Tane Önceden Eğitilmiş Model (Pretrained Model) Seçin

 CNN, RNN ya da bir transformatör gibi, doğru aile modellerinden birini seçmek harika bir başlangıç olacaktır. Fakat bu sadece bir başlangıç.

Eğer bir Baja 500 sürmek isterseniz, bir kumul arabasını sağlam lastik ve amortisörlerle değiştirebilir veya bu sınıftan yapılmış bir arabayı satın alabilirsiniz.

Makine öğreniminde, buna önceden eğitilmiş model (Pretrained Model) deniyor. Bu model, kullanım alanlarınızdaki veriye benzeyen, büyük eğitici veri kümelerine göre ayarlanmıştır. Makine öğrenimi için geliştirici araçlarından biri olan  ‘weights and biases’ olarakta adlandırılan, veri ilişkileri bu amaç için optimize edilmiştir.

Bir modeli eğitmek, devasa bir veri kümesini ,çok fazla yapay zekâ uzmanlığını ve önemli derecede hesaplama gücünü gerektirir. Bilinçli satıcılar, zamandan ve paradan tasarruf etmek için bu önceden eğitilmiş modelleri satın alır.

Kime Başvurmalıyız?

 Önceden eğitilmiş bir model satın alırken güvenebileceğiniz bir satıcı bulun.

NVIDIA’ya ait olan NGC kataloğu, önceden eğitilmiş modellerle dolu çevrimiçi bir kitaplıktır. Yapay zekâ işlerinin spektrumunu, bilgisayar görüşü, diyaloğa dayalı yapay zekâ (Conversational AI) gibi daha birçok yerden alıyor. Bu katalogdaki modeller özgeçmişlerle birlikte geldiğinden kullanıcılar ne elde edeceklerini biliyor. Bunlar bir nevi potansiyel işe alım belgeleri gibidir.

Model özgeçmişleri size modelin eğitildiği etki alanını, onu eğiten veri kümesini ve nasıl performans göstermesi gerektiğini gösterir. Kullanım alanlarınıza göre doğru modeli seçmeniz konusunda size şeffaflık ve güven sağlarlar.

ML Modelleri için Daha Fazla Kaynak

 Ayrıca, NGC modelleri aktarımlı öğrenme (Transfer Learning) için oldukça hazırdır.

Bu, modellerin uygulama verilerinizi çalıştırmakta izleyecekleri yol haritasına göre modelleri torklayan son ayardır.

NVIDIA NGC modelinizi ayarlamanız için size bir framework bile temin ediyor.

TAO olarak adlandırılan bu framework’e bugün buradan erken erişim için kayıt olabilirsiniz.

Etiketler: Makine Öğrenimi Modelimakine öğrenmemlML ModellerinVidia
PaylaşPaylaşTweetYollaPaylaş
Büşra Alçınar

Büşra Alçınar

Computer & Software Engineer | GreyHat Hacker | Translator & Teacher in 9 languages | TouristGuide | Cook | Gamer | Writer | ATC Specialist | Delegate of Rissho Uni ⛩ #WomenInTech

Yorum Yap Yanıtı iptal et

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

RSS Technopat Sosyal

  • Hesabın maili değiştirilmiş
  • 1300 TL civarı kablosuz fare önerisi
  • 56 bin TL'ye R5 7600X - RTX 5070 hazır sistem alınır mı?
  • HP Omen 16 81T42A RTX 4080 laptop
  • The Legend of Zelda: Breath of the Wild Türkçe Yama
  • R5 5600 RX 5700 sistem için 5-6-7 bin TL'ye 850W kaliteli sağlam güç kaynağı önerisi
  • Beli dar sırtı geniş kalıpta gömlekler nereden bulunabilir?
  • Hangi modem 100/20 Mbit için daha iyi olur?
  • 6 ayda 10 bin sıralama yapılabilir mi?
  • Windows 7'de .minecraft dosyasına erişilemiyor

Technopat Video

Şu an oynayan

Haftanın teknoloji gündemi: T Raporu 2. bölüm sizlerle

Haftanın teknoloji gündemi: T Raporu 2. bölüm sizlerle

Haftanın teknoloji gündemi: T Raporu 2. bölüm sizlerle

Haber
Yeni kasa, RTX 5070 Ti ve gerçek performans! Acer Predator Helios Neo 16 AI inceleme

Yeni kasa, RTX 5070 Ti ve gerçek performans! Acer Predator Helios Neo 16 AI inceleme

Haber
Uzun ömürlü olsun ama cebimi yakmasın diyenlere: İtopya RTX 5060 Ti OEM paket inceleme

Uzun ömürlü olsun ama cebimi yakmasın diyenlere: İtopya RTX 5060 Ti OEM paket inceleme

Haber

Teknoloji tutkunu Technopatların ortak adresi: Technopat.net!

Güncel teknoloji, internet, donanım, yazılım, oyun ve daha fazlası haber, makale ve videolar ile Technopat’ta sizlerle.

01010100 01100101 01100011 01101000 01101110 01101111 01110000 01100001 01110100

Kategoriler

  • Yapay Zeka
  • Ev Teknolojileri
  • Makale
  • Video

Sosyal Medya

Bağlantılar

  • Hakkında
  • Haber
  • Video
  • Sosyal
  • Çerez Politikası
© 2011-2025 Technopat. Tüm Hakları Saklıdır.

Hosting :

Çerez Onayı
Web sitemizi ziyaret ettiğinizde, kullanıcı deneyiminizi daha iyi hale getirmek, hizmetlerimizi size daha etkin bir şekilde sunabilmek için çerezler (cookies) ve benzeri araçlar kullanıyoruz. Çerezler, internet sitesinin düzgün çalışmasını sağlamak, içeriği kişiselleştirmek, sosyal medya özellikleri sağlamak ve trafik analizi yapmak için kullanılan küçük metin dosyalarıdır. Çerezleri nasıl kullandığımız ve kişisel verilerinizi nasıl işlediğimiz hakkında daha fazla bilgi almak için çerez politikamızı ve kişisel veri politikamızı inceleyebilirsiniz.
Fonksiyonel Her zaman aktif
Teknik depolama veya erişim, sadece kullanıcının açıkça talep ettiği belirli bir hizmetin kullanılmasını sağlama amacıyla veya iletişimin elektronik iletişim ağı üzerinden iletilmesinin tek amacıyla yasal olarak kesinlikle gereklidir.
Tercihler
Teknik depolama veya erişim, abone veya kullanıcı tarafından istenmeyen tercihlerin depolanması yasal amacıyla gereklidir.
İstatistikler
Sadece istatistiksel amaçlarla kullanılan teknik depolama veya erişim. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Pazarlama
Teknik depolama veya erişim, reklam gönderimi için kullanıcı profilleri oluşturmak veya kullanıcıyı bir web sitesinde veya birden fazla web sitesinde benzer pazarlama amaçları için takip etmek amacıyla gereklidir.
  • Seçenekleri yönet
  • Hizmetleri yönetin
  • {vendor_count} satıcılarını yönetin
  • Bu amaçlar hakkında daha fazla bilgi edinin
Tercihleri yönet
  • {title}
  • {title}
  • {title}
Sonuç bulunamadı
Bütün Sonuçları Göster
  • Giriş
  • Teknoloji Haberleri
  • Sosyal
  • Nasıl Yapılır
  • Yapay Zeka
  • Video
  • Tavsiyeler
  • İncelemeler
    • Video İncelemeler
  • Güvenlik
  • Oyun
  • Makale
    • Pratik
    • Yazar Köşeleri

© 2025 Technopat
Sorularınız için Technopat Sosyal