OpenCore

Reference Manual (0.9.4.5)

[2023.09.10]

Copyright ©2018-2023 vit9696

14.

15.

16.

Failsafe: false
Description: Protect UEFT services from being overridden by the firmware.

Some modern firmware, including on virtual machines such as VMware, may update pointers to UEFI services
during driver loading and related actions. Consequently, this directly obstructs other quirks that affect memory
management, such as DevirtualiseMmio, ProtectMemoryRegions, or RebuildAppleMemoryMap, and may also
obstruct other quirks depending on the scope of such.

GRUB shim-Shim makes similar on-the-fly changes to various UEFI image services, which are also protected
against by this quirk.

Note 1: On VMware, the need for this quirk may be determined by the appearance of the “Your Mac OS guest
might run unreliably with more than one virtual core.” message.

Note 2: This quirk is needed for correct operation if OpenCore is chainloaded from GRUB with BIOS Secure
Boot enabled.

ProvideCustomSlide

Type: plist boolean

Failsafe: false

Description: Provide custom KASLR slide on low memory.

This option performs memory map analysis of the firmware and checks whether all slides (from 1 to 255) can be
used. As boot.efi generates this value randomly with rdrand or pseudo randomly rdtsc, there is a chance of
boot failure when it chooses a conflicting slide. In cases where potential conflicts exist, this option forces macOS
to select a pseudo random value from the available values. This also ensures that the slide= argument is never
passed to the operating system (for security reasons).

Note: The need for this quirk is determined by the OCABC: Only N/256 slide values are usable! message
in the debug log.

ProvideMaxSlide

Type: plist integer

Failsafe: 0

Description: Provide maximum KASLR slide when higher ones are unavailable.

This option overrides the maximum slide of 255 by a user specified value between 1 and 254 (inclusive) when
ProvideCustomSlide is enabled. It is assumed that modern firmware allocates pool memory from top to bottom,
effectively resulting in free memory when slide scanning is used later as temporary memory during kernel loading.
When such memory is not available, this option stops the evaluation of higher slides.

Note: The need for this quirk is determined by random boot failures when ProvideCustomSlide is enabled and
the randomized slide falls into the unavailable range. When AppleDebug is enabled, the debug log typically
contains messages such as AAPL: [EB|‘LD:LKC] } Err(0x9). To find the optimal value, append slide=X, where
X is the slide value, to the boot-args and select the largest one that does not result in boot failures.

RebuildAppleMemoryMap

Type: plist boolean

Failsafe: false

Description: Generate macOS compatible Memory Map.

The Apple kernel has several limitations on parsing the UEFI memory map:

¢ The Memory map size must not exceed 4096 bytes as the Apple kernel maps it as a single 4K page. As some
types of firmware can have very large memory maps, potentially over 100 entries, the Apple kernel will crash
on boot.

e The Memory attributes table is ignored. EfiRuntimeServicesCode memory statically gets RX permissions
while all other memory types get RW permissions. As some firmware drivers may write to global variables at
runtime, the Apple kernel will crash at calling UEFI runtime services unless the driver .data section has a
EfiRuntimeServicesData type.

To workaround these limitations, this quirk applies memory attribute table permissions to the memory map
passed to the Apple kernel and optionally attempts to unify contiguous slots of similar types if the resulting
memory map exceeds 4 KB.

22

they have no memory. Using the non-volatile flag will cause the log to be written to NVRAM flash after every
printed line.

To obtain UEFT variable logs, use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-1log |
awk '{gsub(/%0d4%0a%00/,"") ;gsub(/%0d%0a/,"\n")}1"

Warning 1: Certain firmware appear to have defective NVRAM garbage collection. As a result, they may not be
able to always free space after variable deletion. Do not enable non-volatile NVRAM logging on such devices
unless specifically required.

While the OpenCore boot log already contains basic version information including build type and date, this
information may also be found in the opencore-version NVRAM variable even when boot logging is disabled.

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS . txt (in UTC) under the EFI volume root with
log contents (the upper case letter sequence is replaced with date and time from the firmware). Please be warned
that some file system drivers present in firmware are not reliable and may corrupt data when writing files through
UEFI. Log writing is attempted in the safest manner and thus, is very slow. Ensure that DisableWatchDog is set
to true when a slow drive is used. Try to avoid frequent use of this option when dealing with flash drives as large
I/O amounts may speed up memory wear and render the flash drive unusable quicker.

Warning 2: It is possible to enable fast file logging, which requires a fully compliant firmware FAT32 driver.
On drivers with incorrect FAT32 write support (e.g. APTIO IV, but maybe others) this setting can result in
corruption up to and including an unusable ESP filesystem, therefore be prepared to recreate the ESP partition
and all of its contents if testing this option. This option can increase logging speed significantly on some suitable
firmware, but may make little speed difference on some others.

When interpreting the log, note that the lines are prefixed with a tag describing the relevant location (module) of
the log line allowing better attribution of the line to the functionality.

The list of currently used tags is as follows.
Drivers and tools:

e BMF — OpenCanopy, bitmap font
e BS — Bootstrap

e GSTT — GoptStop

e HDA — AudioDxe

o KKT — KeyTester

e LNX — OpenLinuxBoot

¢ MMDD — MmapDump

e 0OCPAVP — PavpProvision

e OCRST — ResetSystem

e 0CUI — OpenCanopy

e 0C — OpenCore main, also OcMainLib

e OLB — OpenLegacyBoot
e VMOPT — VerifyMemOpt

Libraries:

e AAPL — OcLogAggregatorLib, Apple EfiBoot logging
e 0CABC — OcAfterBootCompatLib
e OCAE — OcAppleEventLib

e 0CAK — OcAppleKernelLib

e OCAU — OcAudioLib

e 0CA — OcAcpiLib

e 0CBP — OcAppleBootPolicyLib

e 0CB — OcBootManagementLib

e OCLBT — OcBlitLib

e 0CCL — OcAppleChunkListLib

e 0CCPU — OcCpulLib

e 0CC — OcConsoleLib

o1

11 UEFI

11.1 Introduction

UEFT (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows loading additional UEFI modules as well as applying tweaks
to the onboard firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITool and
supplementary utilities can be used.

11.2 Drivers

Depending on the firmware, a different set of drivers may be required. Loading an incompatible driver may lead the
system to unbootable state or even cause permanent firmware damage. Some of the known drivers are listed below:

AudioDxe™*

btrfs_x64

BiosVideo®*

CrScreenshotDxe*

EnableGop{Directl}*

ExFatDxe

ext4d_x64

HfsPlus

HiiDatabase®

EnhancedFatDxe

NvmExpressDxe™

OpenCanopy™
OpenRuntime™

OpenLegacyBoot*

OpenLinuxBoot®*

[HDA audio support driver|in UEFI firmware for most Intel and some other analog audio
controllers. Staging driver, refer to lacidanthera/bugtracker#740 for known issues in
AudioDxe.

Open source BTRFS file system driver, required for booting with from
a file system which is now quite commonly used with Linux.

CSM video driver implementing graphics output protocol based on VESA and legacy
BIOS interfaces. Used for UEFI firmware with fragile GOP support (e.g. low resolution).
Requires ReconnectGraphicsOnConnect. Included in OpenDuet out of the box.
Screenshot making driver saving images to the root of OpenCore partition (ESP) or
any available writeable filesystem upon pressing F10. Accepts optional driver argument
--enable-mouse-click to additionally take screenshot on mouse click. (It is recom-
mended to enable this option only if a keypress would prevent a specific screenshot, and
disable it again after use.) This is a modified version of CrScreenshotDxe driver by
Nikolaj Schlejl

Early beta release firmware-embeddable driver providing pre-OpenCore non-native
GPU support on MacPro5,1. Installation instructions can be found in the
Utilities/EnableGop directory of the OpenCore release zip file - proceed with caution.
Proprietary ExFAT file system driver for Bootcamp support commonly found in Apple
firmware. For Sandy Bridge and earlier CPUs, the ExFatDxeLegacy driver should be
used due to the lack of RDRAND instruction support.

Open source EXT4 file system driver, required for booting with [OpenLinuxBoot| from
the file system most commonly used with Linux.

Recommended. Proprietary HFS file system driver with bless support commonly found
in Apple firmware. For Sandy Bridge and earlier CPUs, the HfsPlusLegacy driver
should be used due to the lack of RDRAND instruction support.

HII services support driver from MdeModulePkg. This driver is included in most types of
firmware starting with the Ivy Bridge generation. Some applications with GUI, such as
UEFT Shell, may need this driver to work properly.

FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmware and
cannot be used from OpenCore. Several types of firmware have defective FAT support
implementation that may lead to corrupted filesystems on write attempts. Embedding
this driver within the firmware may be required in case writing to the EFI partition is
needed during the boot process.

NVMe support driver from MdeModulePkg. This driver is included in most firmware
starting with the Broadwell generation. For Haswell and earlier, embedding it within
the firmware may be more favourable in case a NVMe SSD drive is installed.
OpenCore plugin| implementing graphical interface.

OpenCore pluginl implementing 0C_FIRMWARE_RUNTIME protocol.

OpenCore plugin| implementing 0C_BOOT_ENTRY PROTOCOL to allow detection and

booting of legacy operating systems from OpenCore on Macs, OpenDuet and systems
with a CSM.

[OpenCore plugin|implementing 0C_BOOT_ENTRY_PROTOCOL to allow direct detection and
booting of Linux distributinens-distributions from OpenCore, without chainloading via
GRUB.

81

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker/issues/740
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/LongSoft/CrScreenshotDxe
https://github.com/NikolajSchlej
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg/blob/master/Staging/EnableGop/README.md
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg

Predefined labels are saved in the \EFI\OC\Resources\Label directory. Each label has .1bl or .12x suffix to represent
the scaling level. Full list of labels is provided below. All labels are mandatory.

e EFIBoot — Generic OS.

e Apple — Apple OS.

e AppleRecv — Apple Recovery OS.

e AppleTM — Apple Time Machine.

e Windows — Windows.

o Other — Custom entry (see Entries).

e ResetNVRAM — Reset NVRAM system action or tool.
e SIPDisabled — Toggle SIP tool with SIP disabled.

e SIPEnabled — Toggle SIP tool with SIP enabled.

e Shell — Entry with UEFI Shell name (e.g. OpenShell).
e Tool — Any other tool.

Note: All labels must have a height of exactly 12 px. There is no limit for their width.

Label and icon generation can be performed with bundled utilities: disklabel and icnspack. Font is Helvetica 12 pt
times scale factor.

Font format corresponds to |AngelCode binary BMF. While there are many utilities to generate font files, currently it is
recommended to use |[dpFontBaker to generate bitmap font (using CoreText produces best results) and fonverter to
export it to binary format.

11.5 OpenRuntime

OpenRuntime is an OpenCore plugin implementing 0C_FIRMWARE_RUNTIME protocol. This protocol implements multiple
features required for OpenCore that are otherwise not possible to implement in OpenCore itself as they are needed to
work in runtime, i.e. during operating system functioning. Feature highlights:

o NVRAM namespaces, allowing to isolate operating systems from accessing select variables (e.g. RequestBootVarRouting
or ProtectSecureBoot).

¢ Read-only and write-only NVRAM variables, enhancing the security of OpenCore, Lilu, and Lilu plugins, such as
VirtualSMC, which implements AuthRestart support.

o NVRAM isolation, allowing to protect all variables from being written from an untrusted operating system (e.g.
DisableVariableWrite).

o UEFI Runtime Services memory protection management to workaround read-only mapping (e.g. EnableWriteUnprotector).

11.6 OpenLegacyBoot

OpenLegacyBoot is an OpenCore plugin implementing 0C_BOOT_ENTRY PROTOCOL. It aims to detect and boot legac
installed operating systems.

Usage:
o Add OpenLegacyBoot.efi and also optionally (see below) OpenNtfsDxe.efi to the config.plist Drivers
section.

« Install Windows or another legacy operating system as normal if this has not been done earlier — OpenLegacyBoot
is not involved in this stage and may be unable to boot from installation media such as a USB device.
¢ Reboot into OpenCore: the installed legacy operating system should appear and boot directly from OpenCore

when selected.

OpenLegacyBoot does not require any additional filesystem drivers such as OpenNtfsDxe.efi to be loaded for base
functionality, but loading them will enable the use of .contentDetails EMWM files for boot entr

customisation.

11.6.1 Configuration

No additional configuration should work well in most circumstances, but if required the following options for the driver
may be specified in UEFI/Drivers/Arguments:

84

https://www.angelcode.com/products/bmfont
https://github.com/danpla/dpfontbaker
https://github.com/danpla/dpfontbaker/pull/1
https://github.com/usr-sse2/fonverter

e —-hide-devices - String value, no default.
When this option is present and has one or more values separated by semicolons
.g. —-hide-devices=PciRoot(0x0)/Pci(0x1F,0x2) /Sata(0x0,0xFFFF.0x0) /HD(2,GPT,...
the specified disks for legacy operating system boot sectors.

it disables scannin

11.7 OpenLinuxBoot

OpenLinuxBoot is an OpenCore plugin implementing 0C_BOOT_ENTRY_PROTOCOL. It aims to automatically detect and
boot most Linux distros without additional configuration.

Usage is as follows:

o Add OpenLinuxBoot.efi and also typically (see below) ext4_x64.efi to the config.plist Drivers section.

o Make sure RequestBootVarRouting and LauncherOption are enabled in config.plist; it is also recommended
to enable HideAuxiliary in order to hide older Linux kernels except when required (they are added as auxiliary
entries and so may then be shown by pressing the Spacebar key in the OpenCore boot menu).

e Install Linux as normal if this has not been done earlier — OpenLinuxBoot is not involved in this stage.

e Reboot into OpenCore: the installed Linux distribution should just appear and boot directly from OpenCore
when selected, which it does without chainloading via GRUB.

If OpenCore has already been manually set up to boot Linux, e.g. via BlessOverride or via Entries then then these
settings may be removed so that the Linux distribution is not displayed twice in the boot menu.

It is recommended to install Linux with its default bootloader, even though this will not be actively used when booting
via OpenLinuxBoot. This is because OpenLinuxBoot has to detect the correct kernel options to use, and does so by
looking in files left by the default bootloader. If no bootloader was installed (or these options cannot be found) booting
is still possible, but the correct boot options must be manually specified before OpenLinuxBoot will attempt to start
the distro.

OpenLinuxBoot typically requires filesystem drivers that are not available in firmware, such as EXT4 and BTRFS
drivers. These drivers can be obtained from external sources. Drivers tested in basic scenarios can be downloaded
from |OcBinaryData. Be aware that these drivers are not tested for reliability in all scenarious, nor did they undergo
tamper-resistance testing, therefore they may carry potential security or data-loss risks.

Most Linux distros require the ext4_x64| driver, a few may require the btrfs_x64 driver, and a few may require no
additional file system driver: it depends on the filesystem of the boot partition of the installed distro, and on what
filesystems are already supported by the system’s firmware. LVM is not currently supported - this is because it is not
believed that there is currently a stand-alone UEFI LVM filesystem driver.

Be aware of the SyncRuntimePermissions quirk, which may need to be set to avoid early boot failure (typically halting
with a black screen) of the Linux kernel, due to a firmware bug of some firmware released after 2017. When present
and not mitigated by this quirk, this affects booting via OpenCore with or without OpenLinuxBoot.

After installing OpenLinuxBoot, it is recommended to compare the options shown in the OpenCore debug log when
booting (or attempting to boot) a given distro against the options seen using the shell command cat /proc/cmdline
when the same distro has been booted via its native bootloader. In general (for safety and security of the running distro)
these options should match, and if they do not it is recommended to use the driver arguments below (in particular
LINUX_BOOT_ADD_RO, LINUX_BOOT_ADD_RW, autoopts:{PARTUUID} and autoopts) to modify the options as required.
Note however that the following differences are normal and do not need to be fixed:

o If the default bootloader is GRUB then the options generated by OpenLinuxBoot will not contain a BOOT_IMAGE=. . .
value where the GRUB options do, and will contain an initrd=... value where the GRUB options do not.

e OpenLinuxBoot uses PARTUUID rather than filesystem UUID to identify the location of initrd, this is by design
as UEFT filesystem drivers do not make Linux filesystem UUID values available.

o Less important graphics handover options (such as discussed in the Ubuntu example given in autoopts below)
will not match exactly, this is not important as long as distro boots successfully.

If using OpenLinuxBoot with Secure Boot, users may wish to use-theshim—to—cert-tool inclided—in-OpenCore

beﬂfeﬂﬂd—by—ﬂ%ei—re%eﬂfelrhl 1sta11 a user bullt user si ned Shlm bootloader ivin SBAT and MOK inte ratlon as
explained in OpenCore ShimUtils.

85

https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/ShimUtils

11.

12.

13.

14.

RequestBootVarRouting

Type: plist boolean

Failsafe: false

Description: Request redirect of all Boot prefixed variables from EFI_GLOBAL_VARIABLE_GUID to
OC_VENDOR_VARIABLE_GUID.

This quirk requires 0C_FIRMWARE_RUNTIME protocol implemented in OpenRuntime.efi. The quirk lets default
boot entry preservation at times when the firmware deletes incompatible boot entries. In summary, this quirk is
required to reliably use the |Startup Disk preference pane in firmware that is not compatible with macOS boot
entries by design.

By redirecting Boot prefixed variables to a separate GUID namespace with the help of RequestBootVarRouting
quirk we achieve multiple goals:

e Operating systems are jailed and only controlled by OpenCore boot environment to enhance security.

¢ Operating systems do not mess with OpenCore boot priority, and guarantee fluent updates and hibernation
wakes for cases that require reboots with OpenCore in the middle.

¢ Potentially incompatible boot entries, such as macOS entries, are not deleted or corrupted in any way.

ResizeUsePciRblo

Type: plist boolean

Failsafe: false

Description: Use PciRootBridgelo for ResizeGpuBars and ResizeAppleGpuBars

The quirk makes ResizeGpuBars and ResizeAppleGpuBars use PciRootBridgelo instead of Pcilo. This is
needed on systems with a buggy Pcilo implementation where trying to configure Resizable BAR results in
Capability I/0 Error. Typically this is required on older systems which have been modified with ReBarUEFI.

ShimBetainProtocol

Type: plist boolean

Description: Request Linux Shim to keep protocol installed for subsequent image loads.

This option is only required if chaining OpenCore from Shim. It must be set in order to allow OpenCore to
launch items which are verified by certificates present in Shim, but not in the system Secure Boot database.

ResizeGpuBars

Type: plist integer

Failsafe: -1

Description: Configure GPU PCI BAR sizes.

This quirk sets GPU PCI BAR sizes as specified or chooses the largest available below the ResizeGpuBars value.
The specified value follows PCI Resizable BAR spec. Use 0 for 1 MB, 1 for 2 MB, 2 for 4 MB, and so on up to
19 for 512 GB.

Resizable BAR technology allows to ease PCI device programming by mapping a configurable memory region,
BAR, into CPU address space (e.g. VRAM to RAM) as opposed to a fixed memory region. This technology is
necessary, because one cannot map the largest memory region by default, for the reasons of backwards compatibility
with older hardware not supporting 64-bit BARs. Consequentially devices of the last decade use BARs up to 256
MB by default (4 remaining bits are used by other data) but generally allow resizing them to both smaller and
larger powers of two (e.g. from 1 MB up to VRAM size).

Operating systems targeting x86 platforms generally do not control PCI address space, letting UEFI firmware
decide on the BAR addresses and sizes. This illicit practice resulted in Resizable BAR technology being unused
up until 2020 despite being standardised in 2008 and becoming widely available in the hardware soon after.

Modern UEFT firmware allow the use of Resizable BAR technology but generally restrict the configurable options
to failsafe default (OFF) and maximum available (ON). This quirk allows to fine-tune this value for testing and
development purposes.

Consider a GPU with 2 BARs:

e BARO supports sizes from 256 MB to 8 GB. Its value is 4 GB.
e BAR1 supports sizes from 2 MB to 256 MB. Its value is 256 MB.

111

https://support.apple.com/HT202796
https://github.com/xCuri0/ReBarUEFI

6. Sign all the installed drivers and tools with the private key. Do not sign tools that provide administrative access
to the computer, such as UEFI Shell.

7. Vault the configuration as explained section.

8. Sign all OpenCore binaries (BOOTX64.efi, BOOTIa32.efi, OpenCore.efi, custom launchers) used on this system
with the same private key.

9. Sign all third-party operatlng system (not made by Microsoft or Apple) bootloaders if needed. For Linux there is
an option to install Mie —Debian—Wikia user built, user signed

Shim bootloader givin, SBAT and MOK inte ratlon as ex lamed in the /Utilities/ShimUtils directory of
OpenCore source or releases.

10. Enable UEFI Secure Boot in firmware preferences and install the certificate with a private key. Details on how to
generate a certificate can be found in various articles, such as this one, and are out of the scope of this document.
If Windows is needed one will also need to add the Microsoft Windows Production CA 2011. To launch option
ROMs or to use signed Linux drivers if not using a user build of Shim, Microsoft UEFI Driver Signing CA| will
also be needed.

11. Password-protect changing firmware settings to ensure that UEFI Secure Boot cannot be disabled without the
user’s knowledge.

12.3 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFT installations as well as systems partially supporting UEFI
boot, such as Windows 7, might work with some extra precautions. Things to consider:

o MBR (Master Boot Record) installations are legacy and will-net-be-supperted—are only supported with the
OpenLegacyBoot driver.

o All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

e macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround| for this, it is highly recommend not to rely on it and install properly.

e Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID.
Be aware that it may be invalid on old firmware, i.e., not random. If there still are issues, consider using HWID
or KMS38 license or making the use Custom UpdateSMBIOSMode. Other nuances of Windows activation are out
of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases Windows support software
from [Boot Campl|is required. For simplicity of the download process or when configuring an already installed Windows
version a third-party utility, Brigadier, can be used successfully. Note, that |7-Zip| may be downloaded and installed
prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. If there is a previous version of
Boot Camp installed it should be removed first by running msiexec /x BootCamp.msi command. BootCamp.msi file
is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, the rest may still have to be
addressed manually:

e To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUser.

e RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser (this is typically not required).

116

https://wiki.debian.org/SecureBoot
https://habr.com/en/post/273497
http://go.microsoft.com/fwlink/?LinkID=321192
http://go.microsoft.com/fwlink/?LinkId=321194
https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432

	UEFI
	Introduction
	Drivers
	OpenRuntime
	OpenLegacyBoot
	OpenLinuxBoot

	Windows support

