OpenCore

Reference Manual (0.6.0.1)
[2020.09.06]

Copyright ©2018-2020 vit9696

2 Configuration

2.1 Configuration Terms

e 0C config — OpenCore Configuration file in plist format named config.plist. It has to provide extensible
way to configure OpenCore and is structured to be separated into multiple named sections situated in the root
plist dictionary. These sections are permitted to have plist array or plist dictionary types and are
described in corresponding sections of this document.

e valid key — plist key object of OC config described in this document or its future revisions. Besides explicitly
described valid keys, keys starting with # symbol (e.g. #Hello) are also considered valid keys and behave as
comments, effectively discarding their value, which is still required to be a valid plist object. All other plist
keys are not valid, and their presence yields to undefined behaviour.

e valid value — valid plist object of OC config described in this document that matches all the additional
requirements in specific plist object description if any.

e invalid value — valid plist object of OC config described in this document that is of other plist type,
does not conform to additional requirements found in specific plist object description (e.g. value range), or
missing from the corresponding collection. Invalid value is read with or without an error message as any
possible value of this plist object in an undetermined manner (i.e. the values may not be same across the
reboots). Whilst reading an invalid value is equivalent to reading certain defined valid value, applying
incompatible value to the host system may yield to undefined behaviour.

e optional value — valid value of OC config described in this document that reads in a certain defined manner
provided in specific plist object description (instead of invalid value) when not present in 0C config. All
other cases of invalid value do still apply. Unless explicitly marked as optional value, any other value is
required to be present and reads to invalid value if missing.

e fatal behaviour — behaviour leading to boot termination. Implementation must stop the boot process from
going any further until next host system boot. It is allowed but not required to perform cold reboot or show any
warning message.

e undefined behaviour — behaviour not prescribed by this document. Implementation is allowed to take any
measures including but not limited to fatal behaviour, assuming any states or values, or ignoring, unless these
measures negatively affect system security in general.

2.2 Configuration Processing

0C config is guaranteed to be processed at least once if it was found. Depending on OpenCore bootstrapping
mechanism multiple 0C config files may lead to reading any of them. No 0C Config may be present on disk, in which
case all the values read follow the rules of invalid value and optional value.

0C config has size, nesting, and key amount limitations. 0C config size does not exceed 16 MBs. OC config has no
more than 8 nesting levels. 0C config has up to 16384 XML nodes (i.e. one plist dictionary item is counted as a
pair of nodes) within each plist object.

Reading malformed OC config file leads to undefined behaviour. Examples of malformed 0OC config cover at least
the following cases:

o files non-conformant to plist DTD
e files with unsupported or non-conformant plist objects found in this document
o files violating size, nesting, and key amount limitations

It is recommended but not required to abort loading malformed 0C config and continue as if no 0C config was
present. For forward compatibility it is recommended but not required for the implementation to warn about the use of
invalid values. Recommended practice of interpreting invalid values is to conform to the following convention
where applicable:

Fype-

Type VatteValue

plist string Empty string (<string></string>)
plist data Empty data (<data></data>)
plist integer | 0 (<integer>0</integer>)

plist boolean | False (<false/>)

plist tristate | False (<false/>)

2.3 Configuration Structure

0C config is separated into following sections, which are described in separate sections of this document. By default it
is tried to not enable anything and optionally provide kill switches with Enable property for plist dict entries. In
general the configuration is written idiomatically to group similar actions in subsections:

e Add provides support for data addition. Existing data will not be overridden, and needs to be handled separately
with Delete if necessary.

e Delete provides support for data removal.

e Patch provides support for data modification.

e Quirks provides support for specific hacks.

Root configuration entries consist of the following:

e ACPI

e Booter

e DeviceProperties
o [Kernel]

e Misc

o INVRAM

o [PIatformInidl

e UEFI

It is possible to perform basic validation of the configuration by using ocvalidate utility. Please note, that ocvalidate
must match the used OpenCore release and may not be able to detect all configuration flaws present in the file.

Note: Currently most properties try to have defined values even if not specified in the configuration for safety reasons.
This behaviour should not be relied upon, and all fields must be properly specified in the configuration.

3.3 Contribution

OpenCore can be compiled as an ordinary EDK II package. Since UDK| development was abandoned by TianoCore,
OpenCore requires the use of EDK II Stable. Currently supported EDK II release is hosted in [acidanthera/audk. The
required patches for the package are present in Patches directory.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow [EDK II C Codestylel

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. Example command sequence may look as follows:

it clone —--depth=1 https://github.com/acidanthera/audk UDK
cd UDK

. ;) /Lo it hub- /ocidant] /0 CoreP]

it submodule update --init —--recommend-shallow

it clone --depth=1 https://github.com/acidanthera/0OpenCorePk,
source edksetup.sh

make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

on V d

Listing 1: Compilation Commands

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be Sublime Text
with EasyClangComplete| plugin. Add .clang_complete file with similar content to your UDK root:

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/MdeModulePkg
-I/UefiPackages/MdeModulePkg/Include
-I/UefiPackages/MdeModulePkg/Include/X64
-I/UefiPackages/0OpenCorePkg/Include/AMI
-I/UefiPackages/OpenCorePkg/Include/Acidanthera
-I/UefiPackages/OpenCorePkg/Include/Apple
-I/UefiPackages/0OpenCorePkg/Include/Apple/X64
-I/UefiPackages/0OpenCorePkg/Include/Duet
-I/UefiPackages/0OpenCorePkg/Include/Generic
-I/UefiPackages/OpenCorePkg/Include/Intel
-I/UefiPackages/OpenCorePkg/Include/Microsoft
-I/UefiPackages/0OpenCorePkg/Include/VMware
-I/UefiPackages/0vmfPkg/Include
-I/UefiPackages/UefiCpuPkg/Include
-IInclude

—include
/UefiPackages/MdePkg/Include/Uefi.h
-fshort-wchar

-Wall

-Wextra

-Wno-unused-parameter

-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare

-Wno-sign-compare

-Wno-varargs

-Wno-unused-const-variable
-DOC_TARGET_NOOPT=1

-DNO_MSABI_VA_FUNCS=1

Listing 2: ECC Configuration

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/tree/master/external
https://www.sublimetext.com
https://niosus.github.io/EasyClangComplete

Codestyle. The codebase follows EDK II codestyle with few changes and clarifications.

3.5
The

Write inline documentation for the functions and variables only once: in headers, where a header prototype is
available, and inline for static variables and functions.

Use line length of 120 characters or less, preferably 100 characters.

Use spaces after casts, e.g. (VOID *) (UINTN) Variable.

Use SPDX license headers as shown in acidanthera/bugtracker#483.

Debugging
codebase incorporates EDK II debugging and few custom features to improve the experience.

Use module prefixes, 2-5 letters followed by a colon (:), for debug messages. For OpenCorePkg use 0C:, for
libraries and drivers use their own unique prefixes.

Do not use dots (.) in the end of debug messages and separate EFI_STATUS, printed by %r, with a hyphen (e.g.
OCRAM: Allocation of %u bytes failed - %r\n).

Use DEBUG_CODE_BEGIN () and DEBUG_CODE_END () constructions to guard debug checks that may potentially
reduce the performance of release builds and are otherwise unnecessary.

Use DEBUG macro to print debug messages during normal functioning, and RUNTIME_DEBUG for debugging after
EXIT_BOOT_SERVICES.

Use DEBUG_VERBOSE debug level to leave debug messages for future debugging of the code, which are currently
not necessary. By default DEBUG_VERBOSE messages are ignored even in DEBUG builds.

Use DEBUG_INFQ debug level for all non critical messages (including errors) and DEBUG_BULK_INFO for extensive
messages that should not appear in NVRAM log that is heavily limited in size. These messages are ignored in
RELEASE builds.

Use DEBUG_ERROR to print critical human visible messages that may potentially halt the boot process, and
DEBUG_WARN for all other human visible errors, RELEASE builds included.

When trying to find the problematic change it is useful to rely on |git-bisect functionality. There also are some
unofficial resources that provide per-commit binary builds of OpenCore, like [Dortania.

https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/bugtracker/issues/483
https://git-scm.com/docs/git-bisect
https://dortania.github.io/builds

DevirtualiseMmio. This means that the firmware will be able to directly communicate with this memory region
during operating system functioning, because the region this value is in will be assigned a virtual address.

The addresses written here must be part of the memory map, have Ef iMemoryMappedIO type and EFI_MEMORY_RUNTIME
attribute (highest bit) set. To find the list of the candidates the debug log can be used.

Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This address will be devirtualised unless set to true.

Quirks Properties

1. AvoidRuntimeDefrag

Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on many firmwares
using SMM backing for select services like variable storage. SMM may try to access physical addresses, but they
get moved by boot.efi.

Note: Most but Apple and VMware firmwares need this quirk.

DevirtualiseMmio

Type: plist boolean

Failsafe: false

Description: Remove runtime attribute from select MMIO regions.

This option reduces stolen memory footprint from the memory map by removing runtime bit for known memory
regions. This quirk may result in the increase of KASLR slides available, but is not necessarily compatible with
the target board without additional measures. In general this frees from 64 to 256 megabytes of memory (present
in the debug log), and on some platforms it is the only way to boot macOS, which otherwise fails with allocation
error at bootloader stage.

This option is generally useful on all firmwares except some very old ones, like Sandy Bridge. On select firmwares
it may require a list of exceptional addresses that still need to get their virtual addresses for proper NVRAM and
hibernation functioning. Use MmioWhitelist section to do this.

DisableSingleUser

Type: plist boolean

Failsafe: false

Description: Disable single user mode.

This is a security option allowing one to restrict single user mode usage by ignoring CMD+S hotkey and -s boot
argument. The behaviour with this quirk enabled is supposed to match T2-based model behaviour. Read this
archived article to understand how to use single user mode with this quirk enabled.

DisableVariableWrite

Type: plist boolean

Failsafe: false

Description: Protect from macOS NVRAM write access.

This is a security option allowing one to restrict NVRAM access in macOS. This quirk requires 0C_FIRMWARE_RUNTIME
protocol implemented in OpenRuntime.efi.

Note: This quirk can also be used as an ugly workaround to buggy UEFI runtime services implementations that
fail to write variables to NVRAM and break the rest of the operating system.

16

https://web.archive.org/web/20200517125051/https://support.apple.com/en-us/HT201573
https://web.archive.org/web/20200517125051/https://support.apple.com/en-us/HT201573

7

7.1

Kernel

Introduction

This section allows to apply different kinds of kernelspace modifications on Apple Kernel (XNU). The modifications
currently provide driver (kext) injection, kernel and driver patching, and driver blocking.

7.2

1.

Properties

Add

Type: plist array

Failsafe: Empty

Description: Load selected kernel drivers from 0C/Kexts directory.

Designed to be filled with plist dict values, describing each driver. See section below. Kernel
driver load order follows the item order in the array, thus the dependencies should be written prior to their
consumers.

To track the dependency order one can inspect the 0SBundleLibraries key in the Info.plist of the kext. Any
kext mentioned in the 0SBundleLibraries of the other kext must be precede this kext.

Note: Kexts may have inner kexts (Plug-Ins) in their bundle. Each inner kext must be added separately.

Block

Type: plist array

Failsafe: Empty

Description: Remove selected kernel drivers from prelinked kernel.

Designed to be filled with plist dictionary values, describing each blocked driver. See [Block Properties|section
below.

Emulate

Type: plist dict

Description: Emulate select hardware in kernelspace via parameters described in |[Ekmulate Properties| section
below.

Force

Failsafe: Empt
Description: Load kernel drivers from system volume if they are not cached.

Designed to be filled with plist dict values, describing each driver. See[Force Properties]section below. This
section resolves the problem of injecting drivers that depend on other drivers, which are not cached otherwise.
The _issue normally affects older operating systems, where various dependency kexts, like T0AudioFamily or
I0NetworkingFamily may not be present in the kernel cache by default. Kernel driver load order follows the

item order in the array, thus the dependencies should be written prior to their consumers. Force happens before
Add.

Note: The signature of the “forced” kernel drivers is not checked anyhow. making the use of this feature extremely
dangerous and undesired for secure boot. This feature may not work on encrypted partitions in newer operating
Patch

Type: plist array

Failsafe: Empty

Description: Perform binary patches in kernel and drivers prior to driver addition and removal.

Designed to be filled with plist dictionary values, describing each patch. See [Patch Properties|section below.

Quirks
Type: plist dict
Description: Apply individual kernel and driver quirks described in [Quirks Properties| section below.

22

https://opensource.apple.com/source/xnu

Scheme
Type: plist dict
Description: Define kernelspace operation mode via parameters described in [Scheme Properties|section below.

Add Properties

L. Arch

Failsafe: An
Description: Kext architecture (Any, 1386, x86_64).

. BundlePath

Type: plist string
Failsafe: Empty string
Description: Kext bundle path (e.g. Lilu.kext or MyKext.kext/Contents/PlugIns/MySubKext.kext).

Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

. Enabled

Type: plist boolean
Failsafe: false
Description: This kernel driver will not be added unless set to true.

ExecutablePath

Type: plist string

Failsafe: Empty string

Description: Kext executable path relative to bundle (e.g. Contents/Mac0S/Lilu).
MaxKernel

Type: plist string

Failsafe: Empty string

Description: Adds kernel driver on specified macOS version or older.

Kernel version can be obtained with uname -r command, and should look like 3 numbers separated by dots, for
example 18.7.0 is the kernel version for 10.14.6. Kernel version interpretation is implemented as follows:

ParseDarwinVersion(k, A, u) = £ - 10000 Where k € (0,99) is kernel version major
+ A-100 Where X € (0,99) is kernel version minor
+u Where p € (0,99) is kernel version patch

Kernel version comparison is implemented as follows:

ParseDarwinVersion(MinKernel), If MinKernel is valid
o =
0 Otherwise
5= ParseDarwinVersion(MaxKernel), If MaxKernel is valid
00 Otherwise
) ParseDarwinV ersion(FindDarwinV ersion()), If valid "Darwin Kernel Version" is found
00 Otherwise

fla,B,y) =a<y<p

Here ParseDarwinVersion argument is assumed to be 3 integers obtained by splitting Darwin kernel version
string from left to right by the . symbol. FindDarwinVersion function looks up Darwin kernel version by
locating "Darwin Kernel Version x.A.u" string in the kernel image.

23

7. MinKernel
Type: plist string
Failsafe: Empty string
Description: Adds kernel driver on specified macOS version or newer.

Note: Refer to[Add MaxKernel description] for matching logic.

8. PlistPath
Type: plist string
Failsafe: Empty string
Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

7.4 Block Properties

L. Arch

Failsafe: An
Description: Kext block architecture (Any, 1386, x86 _64).

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel driver will not be blocked unless set to true.

4. Identifier
Type: plist string
Failsafe: Empty string
Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

5. MaxKernel
Type: plist string
Failsafe: Empty string
Description: Blocks kernel driver on specified macOS version or older.

Note: Refer to|Add MaxKernel description| for matching logic.

6. MinKernel
Type: plist string
Failsafe: Empty string
Description: Blocks kernel driver on specified macOS version or newer.

Note: Refer to|Add MaxKernel description| for matching logic.

7.5 Emulate Properties

1. CpuidiData
Type: plist data, 16 bytes
Failsafe: All zero
Description: Sequence of EAX, EBX, ECX, EDX values to replace CPUID (1) call in XNU kernel.

This property serves for two needs:

e Enabling support of an unsupported CPU model.
¢ Enabling XCPM support for an unsupported CPU variant.

Normally it is only the value of EAX that needs to be taken care of, since it represents the full CPUID. The
remaining bytes are to be left as zeroes. Byte order is Little Endian, so for example, C3 06 03 00 stands for
CPUID 0x0306C3 (Haswell).

24

For XCPM support it is recommended to use the following combinations.

o Haswell-E (0x0306F2) to Haswell (0x0306C3):
CpuidiData: C3 06 03 00 00 00 00 00 00 00 OO 00 OO 00 00 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00
o Broadwell-E (0x0406F1) to Broadwell (0x0306D4):
CpuidiData: D4 06 03 00 00 00 00 00 00 00 00 OO 0O OO0 00 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 0O 00

Keep in mind, that the following configurations are unsupported (at least out of the box):

o Consumer Ivy Bridge (0x0306A9) as Apple disabled XCPM for Ivy Bridge and recommends legacy power
management for these CPUs. You will need to manually patch _xcpm_bootstrap to force XCPM on these
CPUs instead of using this option.

o Low-end CPUs (e.g. Haswell+ Pentium) as they are not supported properly by macOS. Legacy hacks for
older models can be found in the Special NOTES section of jacidanthera/bugtracker#365.

. CpuidiMask

Type: plist data, 16 bytes
Failsafe: All zero
Description: Bit mask of active bits in CpuidiData.

When each CpuidiMask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of CpuidiData.

Force Properties

L. Arch

Failsafe: An
Description: Kext architecture (Any, 1386, x86_64).

- BundlePath

Type: plist strin

Failsafe: Empty strin
Description: Kext bundle path (e.g.

\Extensions \IONetworkingFamily.kext).

- Comment

Failsafe: Empty strin
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation

defined whether this value is used.

. Enabled

Type: plist boolean

Description: This kernel driver will not be added when not present unless set to true.

Failsafe: Empty strin
Description: Kext executable path relative to bundle (e.g. Contents/Mac0S/I0NetworkingFamily).

Failsafe: Empty strin

Description: Kext identifier to perform presence checking before addin

.g. com.apple.iokit.IONetworkingFamil
Only drivers which identifiers are not be found in the cache will be added.

. MaxKernel

Failsafe: Empty strin
Description: Adds kernel driver on specified macQOS version or older.

Note: Refer to|Add Add MaxKernel description| for matching logic.

25

https://github.com/acidanthera/bugtracker/issues/365

7.7

MinKernel

Failsafe: Empty strin
Description: Adds kernel driver on specified macOS version or newer.

Note: Refer to[Add Add MaxKernel description| for matching logic.

PlistPath

Type: plist strin

Failsafe: Empty strin
Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

Patch Properties

L. Arch

Failsafe: An
Description: Kext patch architecture (Any, 1386, x86_64).

Base

Type: plist string

Failsafe: Empty string

Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address
of provided symbol name. Can be set to empty string to be ignored.

Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Count

Type: plist integer

Failsafe: 0

Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

Enabled

Type: plist boolean

Failsafe: false

Description: This kernel patch will not be used unless set to true.

Find

Type: plist data

Failsafe: Empty data

Description: Data to find. Can be set to empty for immediate replacement at Base. Must equal to Replace in
size otherwise.

Identifier

Type: plist string

Failsafe: Empty string

Description: Kext bundle identifier (e.g. com.apple.driver.AppleHDA) or kernel for kernel patch.

Limit

Type: plist integer

Failsafe: 0

Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole kext or kernel.

Mask

Type: plist data

Failsafe: Empty data

Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

26

. MaxKernel

Type: plist string
Failsafe: Empty string
Description: Patches data on specified macOS version or older.

Note: Refer to[Add MaxKernel description] for matching logic.

. MinKernel

Type: plist string
Failsafe: Empty string
Description: Patches data on specified macOS version or newer.

Note: Refer to[Add MaxKernel description] for matching logic.

. Replace

Type: plist data

Failsafe: Empty data

Description: Replacement data of one or more bytes.

. ReplaceMask

Type: plist data

Failsafe: Empty data

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

. Skip

Type: plist integer

Failsafe: 0

Description: Number of found occurrences to be skipped before replacement is done.

Quirks Properties

. AppleCpuPmCfgLock

Type: plist boolean

Failsafe: false

Requirement: 10.6 (64-bit)

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Certain firmwares lock PKG_CST_CONFIG_CONTROL MSR register. To check its state one can use bundled
VerifyMsrE2 tool. Select firmwares have this register locked on some cores only.

As modern firmwares provide CFG Lock setting, which allows configuring PKG_CST_CONFIG_CONTROL MSR register
lock, this option should be avoided whenever possible. For several APTIO firmwares not displaying CFG Lock
setting in the GUI it is possible to access the option directly:

(a) Download UEFITool and ITFR-Extractor.

(b) Open your firmware image in UEFITool and find CFG Lock unicode string. If it is not present, your firmware
may not have this option and you should stop.

Extract the Setup.bin PE32 Image Section (the one UEFITool found) through Extract Body menu option.
Run IFR-Extractor on the extracted file (e.g. ./ifrextract Setup.bin Setup.txt).

Find CFG Lock, VarStoreInfo (VarOffset/VarName): in Setup.txt and remember the offset right after
it (e.g. 0x123).

Download and run Modified GRUB Shell| compiled by brainsucker or use |a newer version by |datasone.
Enter setup_var 0x123 0x00 command, where 0x123 should be replaced by your actual offset, and reboot.

(c
(d
(

e

o —

—
—

)
(2)

WARNINGWarning: Variable offsets are unique not only to each motherboard but even to its firmware version.
Never ever try to use an offset without checking.

. AppleXcpmCfgLock
Type: plist boolean
Failsafe: false

Requirement: 10.8 (not required for older

27

https://github.com/LongSoft/UEFITool/releases
https://github.com/LongSoft/Universal-IFR-Extractor/releases
http://brains.by/posts/bootx64.7z
https://geektimes.com/post/258090
https://github.com/datasone/grub-mod-setup_var
https://github.com/datasone

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should be avoided whenever possible. See AppleCpuPmCfgLock description for more details.

. AppleXcpmExtraMsrs
Type: plist boolean
Failsafe: false

Requirement: 10.8 (not required for older

Description: Disables multiple MSR access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-SP, and similar
CPUs. More details on the XCPM patches are outlined in [acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

. AppleXcpmForceBoost
Type: plist boolean
Failsafe: false

Requirement: 10.8 (not required for older

Description: Forces maximum performance in XCPM mode.

This patch writes 0xFFOO to MSR_IA32_PERF_CONTROL (0x199), effectively setting maximum multiplier for all the
time.

Note: While this may increase the performance, this patch is strongly discouraged on all systems but those
explicitly dedicated to scientific or media calculations. In general only certain Xeon models benefit from the
patch.

. CustomSMBIOSGuid

Type: plist boolean
Failsafe: false

Requirement: 10.6 (64-bit

Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

. DisableIoMapper
Type: plist boolean
Failsafe: false

Requirement: 10.8 (not required for older

Description: Disables I0Mapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to deleting DMAR ACPI table and disabling VT-d in firmware preferences,
which does not break VT-d support in other systems in case they need it.

Type: plist boolean

Requirement: 11.0
Description: Disables __LINKEDIT jettison code.

This option lets Lilu.kext and possibly some others function in macOS Bi

keepsyms=1 boot argument.

Sur with best performance without

. DisableRtcChecksum

Type: plist boolean
Failsafe: false

Requirement: 10.6 (64-bit

Description: Disables primary checksum (0x58-0x59) writing in AppleRTC.

Note 1: This option will not protect other areas from being overwritten, see RTCMemoryFixup| kernel extension
if this is desired.

Note 2: This option will not protect areas from being overwritten at firmware stage (e.g. macOS bootloader), see
AppleRtc protocol description if this is desired.

28

https://github.com/acidanthera/bugtracker/issues/365
https://github.com/acidanthera/RTCMemoryFixup

10.

11.

12.

13.

14.

15.

16.

DummyPowerManagement
Type: plist boolean
Failsafe: false

Requirement: 10.6 (64-bit

Description: Disables AppleIntelCpuPowerManagement.

Note: This option is a preferred alternative to NullCpuPowerManagement .kext for CPUs without native power
management driver in macOS.

ExternalDiskIcons
Type: plist boolean
Failsafe: false

Requirement: 10.6 (64-bit

Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should be avoided whenever possible. Modern firmwares usually have compatible AHCI
controllers.

IncreasePciBarSize
Type: plist boolean
Failsafe: false

Requirement: 10.10
Description: Increases 32-bit PCI bar size in IOPCIFamily from 1 to 4 GBs.

Note: This option should be avoided whenever possible. In general the necessity of this option means misconfigured
or broken firmware.

LapicKernelPanic
Type: plist boolean
Failsafe: false

Requirement: 10.6 (64-bit

Description: Disables kernel panic on LAPIC interrupts.

PanicNoKextDump

Type: plist boolean

Failsafe: false

Requirement: 10.13 (not required for older)

Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

PowerTimeoutKernelPanic
Type: plist boolean
Failsafe: false

Requirement: 10.15 (not required for older

Description: Disables kernel panic on setPowerState timeout.

An additional security measure was added to macOS Catalina (10.15) causing kernel panic on power change
timeout for Apple drivers. Sometimes it may cause issues on misconfigured hardware, notably digital audio, which
sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

ThirdPartyDrives

Type: plist boolean

Failsafe: false

Requirement: 10.6 (64-bit, not required for older)

Description: Apply vendor patches to IOAHCIBlockStorage.kext to enable native features for third-party drives,
such as TRIM on SSDs or hibernation support on 10.15 and newer.

Note: This option may be avoided on user preference. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce. Starting from 10.15 this
utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID namespace with 01 00 00 00 value.

XhciPortLimit

29

Type: plist boolean

Failsafe: false

Requirement: 10.11 (not required for older)

Description: Patch various kexts (AppleUSBXHCILkext, AppleUSBXHCIPCIL.kext, IOUSBHostFamily.kext) to
remove USB port count limit of 15 ports.

Note: This option should be avoided whenever possible. USB port limit is imposed by the amount of used bits in
locationID format and there is no possible way to workaround this without heavy OS modification. The only valid
solution is to limit the amount of used ports to 15 (discarding some). More details can be found on AppleLife.ru.

7.9 Scheme Properties

These properties are particularly relevant for older macOS operating systems. For more details on how to install and
troubleshoot such macOS installation refer to [Legacy Apple OS]

L. FuzzyMatch

Type: plist boolean
Failsafe: false

On macOS$ 10.6 and earlier kernelcache filename has a checksum, which essentially is adler32 from SMBIOS

roduct name and EfiBoot device path. On certain firmwares EfiBoot device path differs between UEFI and
macOS due to ACPI or hardware specifics, rendering kernelcache checksum as always different.

This setting allows matching the latest kernelcache with a suitable architecture when the kernelcache without
suffix is unavailable, improving macOS 10.6 boot performance on several platforms.

2. KernelArch

Type: plist strin
Failsafe: Auto

Description: Prefer specified kernel architecture (Auto, 1386, 1386-user32, x86_64) when available.

On macOS 10.7 and earlier XNU kernel can boot with architectures different from the usual x86_64. This settin
will use the specified architecture to boot macOS when it is supported by the macOS and the configuration:

s Auto — Choose the preferred architecture automatically.

+ 1386 _ Use 1386 (32-hit) kernel when available.

+ 1386-user32 Use 1386 (32-bit) kernel when available and force the use of 32-bit userspace on 64-bit
capable processors. On macOS 64-bit_capable processors are assumed to support SSSE3. This is not the
case for older 64-bit capable Pentium processors, which cause some applications to crash on macOS 10.6.
The behaviour corresponds to ~legacy kernel boot argument.

* x86_64 __ Use x86_64 (64-bit) kernel when available,

Below is the algorithm determining the kernel architecture.

(a) arch argument in image arguments (e.g. when launched via UEFI Shell) or in boot-args variable overrides

any compatibility checks and forces the specified architecture, completing this algorithm.

(b) OpenCore build architecture restricts capabilities to 1386 and 1386-user32 mode for the 32-bit firmware
variant.

(¢) Determined EfiBoot version restricts architecture choice:
* 10.6:10.7 _~ 1386, 1386-user32. or x86 64
* 10.8 or newer —— x86_64

(d) If KernelArch is set to Auto and SSSE3 is not supported by the CPU. capabilities are restricted to
1386-user32 if supported by EfiBoot..

(e) Board identifier (from SMBIOS) based on EfiBoot version disables x86_64 support on an unsupported
model if any 1386 variant is supported. Auto is not consulted here as the list is not overridable in EfiBoot.
(f) KernelArch restricts the support to the explicitly specified architecture (when not set to Auto) if the

architecture remains present in the capabilities.
(g) The best supported architecture is chosen in this order: x86_64, 1386, 1386-user32.

Unlike macOS _10.7, where select boards identifiers are treated as the 1386 only machines, and macOS 10.5 or
earlier, where x86_64 is not supported by the macOS kernel, macOS 10.6 is very special. The architecture choice

30

https://applelife.ru/posts/550233

on macOS 10.6 depends on many factors including not only the board identifier, but also macOS product type
(client _vs server), macOS _point release, and RAM amount. The detection of them all is complicated and not
practical, because several point releases had genuine bugs and failed to properly perform the server detection
in the first place. For this reason OpenCore on macOS 10.6 will fallback to x86_64 architecture whenever it is
supported by the board at all, just like on macOS 10.7. As a reference here is the 64-bit Mac model compatibility

corresponding to actual EfiBoot behaviour on macOS 10.6.8 and 10.7.5.

Model

10.6 (minimal

10.6 (client

10.6 (server

10.7 (any)

Macmini

4,x (Mid 2010

5,x (Mid 2011

4,x (Mid 2010

3.x (Early 2009

Unsupported

Unsupported

Unsupported

5.x (2009/09

Unsupported

Unsupported

Unsupported

2,x (Late 2008

MacBookPro_

4.x (Early 2008

8.x (Early 2011

8.x (Early 2011

3,x_(Mid 2007

8.x (Early 2008

12.x (Mid 2011

12,x (Mid 2011

7,x_(Mid 2007

3.x (Early 2008

9,x_(Mid 2010

3.x (Early 2008

3.x (Early 2008

2.x (Early 2008

2.x (Early 2008

Xserve

2.x (Early 2008

2.x (Early 2008

Note: 3+2 and 6+4 hotkeys to choose the preferred architecture are unsupported due to being handled by EfiBoot
and thus being hard to properly detect.
- KernelCache

Failsafe: Auto

Description: Prefer specified kernel cache type (Auto, Cacheless, Mkext, Prelinked) when available.

Different variants of macOS support different kernel caching variants designed to improve boot performance.
This setting allows to prevent using faster kernel caching variants if slower variants are available for debuggin
and stability reasons. I.e. by specifying Mkext one will disable Prelinked for e.g. 10.6 but not 10.7.

The list of available kernel caching types and its current support in OpenCore is listed below.

macOS | i386 NC | i386 MK | i386 PK | x86 64 NC | x86 64 MK | x86 64 PK | x86 64 KC
10.4 NO | NO(V1) | NO - . — -
I)A; NO | NO(VL) | NO — . - -
106 NO [NO(V3) | NO. YES YES (V2 YES —
107 NO. oS NO_ YES . YES —
11.04 . = . = . YES YES

31

e Mark the option as the default option to boot.
e Boot option through the picker or without it depending on the ShowPicker option.
e Show picker on failure otherwise.

Note 1: This process is meant to work reliably only when RequestBootVarRouting option is enabled or the firmware
does not control UEFI boot options (OpenDuetPkg or custom BDS). Without BootProtect it also is possible that other
operating systems overwrite OpenCore, make sure to enable it if you plan to use them.

Note 2: UEFI variable boot options’ boot arguments will be removed if present as they may contain arguments
compromising the operating system, which is undesired once secure boot is enabled.

Note 8: Some operating systems, namely Windows, will create their boot option and mark it as top most upon first
boot or after NVRAM Reset. When this happens default boot entry choice will update till next manual reconfiguration.

8.2

1.

8.3

Properties

Boot
Type: plist dict
Description: Apply boot configuration described in [Boot Properties| section below.

. BlessOverride

Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders,
for example, \EFI\debian\grubx64.efi for Debian bootloader. This allows unusual boot paths to be au-
tomaticlly discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such
as \System\Library\CoreServices\boot.efi or \EFI\Microsoft\Boot\bootmgfw.efi, but unlike predefined
bless paths they have highest priority.

Debug
Type: plist dict
Description: Apply debug configuration described in [Debug Properties| section below.

Entries
Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See [Entry Properties| section below.

Security
Type: plist dict
Description: Apply security configuration described in [Security Properties| section below.

Tools
Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See [Entry Properties| section below.

Note: Select tools, for example, UEFI Shell, are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain. For tool examples check the UEFI section of this document.

Boot Properties

. ConsoleAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for console.

Text renderer supports colour arguments as a sum of foreground and background colours according to UEFI
specification. The value of black background and black foreground (0) is reserved. List of colour names:

e 0x00 — EFI_BLACK

33

8.

10.

TakeoffDelay

Type: plist integer, 32 bit

Failsafe: 0

Description: Delay in microseconds performed before handling picker startup and action hotkeys.

Introducing a delay may give extra time to hold the right action hotkey sequence to e.g. boot to recovery mode.
On some platforms setting this option to at least 5000-10000 microseconds may be necessary to access action
hotkeys at all due to the nature of the keyboard driver.

Timeout

Type: plist integer, 32 bit

Failsafe: 0

Description: Timeout in seconds in boot picker before automatic booting of the default boot entry. Use 0 to
disable timer.

PickerMode

Type: plist string

Failsafe: Builtin

Description: Choose boot picker used for boot management.

Picker describes underlying boot management with an optional user interface responsible for handling boot
options. The following values are supported:

e Builtin — boot management is handled by OpenCore, a simple text only user interface is used.
e External — an external boot management protocol is used if available. Otherwise Builtin mode is used.
e Apple — Apple boot management is used if available. Otherwise Builtin mode is used.

Upon success External mode will entirely disable all boot management in OpenCore except policy enforcement.
In Apple mode it may additionally bypass policy enforcement. See OpenCanopy plugin for an example of a
custom user interface.

OpenCore built-in boot picker contains a set of actions chosen during the boot process. The list of supported
actions is similar to Apple BDS and in general can be accessed by holding action hotkeys during boot process.
Currently the following actions are considered:

e Default — this is the default option, and it lets OpenCore built-in boot picker to loads the default boot
option as specified in [Startup Disk| preference pane.

e ShowPicker — this option forces picker to show. Normally it can be achieved by holding OPT key during
boot. Setting ShowPicker to true will make ShowPicker the default option.

e ResetNvram — this option performs select UEFI variable erase and is normally achieved by holding
CMD+0PT+P+R key combination during boot. Another way to erase UEFI variables is to choose Reset NVRAM
in the picker. This option requires AllowNvramReset to be set to true.

e BootApple — this options performs booting to the first found Apple operating system unless the default
chosen operating system is already made by Apple. Hold X key to choose this option.

e BootAppleRecovery — this option performs booting to Apple operating system recovery. Either the one
related to the default chosen operating system, or first found in case default chosen operating system is not
made by Apple or has no recovery. Hold CMD+R key combination to choose this option.

Note 1: Activated KeySupport, OpenUsbKbDxe, or similar driver is required for key handling to work. On many
firmwares it is not possible to get all the keys function.

Note 2: In addition to OPT OpenCore supports Escape key to display picker when ShowPicker is disabled. This
key exists for Apple picker mode and for firmwares with PS/2 keyboards that fail to report held OPT key and
require continual presses of Escape key to enter the boot menu.

Note 8: On Macs with problematic GOP it may be difficult to access Apple BootPicker. Te-BootKicker utility
can be blessed to workaround this problem even without loading OpenCore. On some Macs BootKicker wtility
ean—be-blessedwill not run from OpenCore.

Debug Properties

1. AppleDebug

Type: plist boolean

36

https://support.apple.com/HT202796

7. SysReport
Type: plist boolean
Failsafe: false
Description: Produce system report on ESP folder.

This option will create a SysReport directory on ESP partition unless it is already present. The directory will
contain ACPI and SMBIOS dumps.

Note: For security reasons SysReport option is not available in RELEASE builds. Use a DEBUG build if you need
this option.

8. Target
Type: plist integer
Failsafe: 0
Description: A bitmask (sum) of enabled logging targets. By default all the logging output is hidden, so this
option is required to be set when debugging is necessary.

The following logging targets are supported:

o 0x01 (bit 0) — Enable logging, otherwise all log is discarded.
o 0x02 (bit 1) — Enable basic console (onscreen) logging.

e 0x04 (bit 2) — Enable logging to Data Hub.

e 0x08 (bit 3) — Enable serial port logging.

e 0x10 (bit 4) — Enable UEFI variable logging.

o 0x20 (bit 5) — Enable non-volatile UEFI variable logging.

o 0x40 (bit 6) — Enable logging to file.

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -1w0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*x/\1/' | xxd -r -p

UEFT variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some firmwares may truncate it much earlier or drop completely if they have no memory.
Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFT variable log
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-log |
awk '{gsub(/%0d%0a%00/,"") ;gsub(/%0d%0a/,"\n")}1"

WarningWarning: Some firmwares are reported to have broken NVRAM garbage collection. This means that
they may not be able to always free space after variable deletion. Do not use non-volatile NVRAM logging
without extra need on such devices.

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS. txt at EFI volume root with log contents
(the upper case letter sequence is replaced with date and time from the firmware). Please be warned that some
file system drivers present in firmwares are not reliable, and may corrupt data when writing files through UEFT.
Log is attempted to be written in the safest manner, and thus is very slow. Ensure that DisableWatchDog is set
to true when you use a slow drive. Try to avoid frequent use of this option when dealing with flash drives as
large I/O amounts may speedup memory wear and render this flash drive unusable in shorter time.

When interpreting the log, note that the lines are prefixed with a tag describing the relevant location (module)
of the log line allowing one to better attribute the line to the functionality. The list of currently used tags is
provided below.

Drivers and tools:

¢ BMF — OpenCanopy, bitmap font
e« BS — Bootstrap

38

e GSTT — GoptStop

e HDA — AudioDxe

o KKT — KeyTester

¢ MMDD — MmapDump

e 0OCPAVP — PavpProvision
e OCRST — ResetSystem

e 0CUI — OpenCanopy

e 0C — OpenCore main

e VMOPT — VerifyMemOpt

Libraries:

e AAPL — OcDebugLogLib, Apple EfiBoot logging
e 0CABC — OcAfterBootCompatLib

e OCAE — OcAppleEventLib

e 0CAK — OcAppleKernellib

e 0CAU — OcAudioLib

e 0CAV — OcApplelmageVerificationLib
e 0CA — OcAcpiLib

e 0CBP — OcAppleBootPolicyLib

e 0CB — OcBootManagementLib

e 0CCL — OcAppleChunkListLib

e 0CCPU — OcCpulLib

e 0CC — OcConsoleLib

e 0OCDH — OcDataHubLib

e 0CDI — OcAppleDiskImageLib

e 0OCFSQ — OcFileLib, UnblockFs quirk
e 0OCFS — OckFileLib

e 0OCFV — OcFirmwareVolumeLib

e 0OCHS — OcHashServicesLib

e 0CIC — OclmageConversionLib

e OCII — OclnputLib

e 0CJS — OcApfsLib

e 0CKM — OcAppleKeyMapLib

e 0OCL — OcDebuglogLib

e 0CMCO — OcMachoLib

e OCME — OcHeciLib

¢ 0CMM — OcMemoryLib

e OCPI — OckFileLib, partition info

e OCPNG — OcPngLib

e OCRAM — OcAppleRamDiskLib

e OCRTC — OcRtcLib

e 0CSB — OcAppleSecureBootLib

e 0CSMB — OcSmbiosLib

e 0CSMC — OcSmcLib

e 0CST — OcStorageLib

e 0CS — OcSerializedLib

e OCTPL — OcTemplateLib

e 0CUC — OcUnicodeCollationLib

e 0CUT — OcAppleUserInterfaceThemeLib
e OCXML — OcXmlLib

8.5 Security Properties

1. AllowNvramReset
Type: plist boolean
Failsafe: false
Description: Allow CMD+0PT+P+R handling and enable showing NVRAM Reset entry in boot picker.

39

Note 1: It is known that some Lenovo laptops have a firmware bug, which makes them unbootable after performing
NVRAM reset. See acidanthera/bugtracker#995 for more details.

Note 2: Resetting NVRAM will also erase all the boot options otherwise not backed up with bless (e.g. Linux).

. AllowSetDefault

Type: plist boolean
Failsafe: false
Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in boot picker.

. ApECID
Type: plist integer, 64 bit

Description: Apple Enclave Identifier.

Setting this value to any non-zero 64-bit integer will allow using personalised Apple Secure Boot, identifiers. If
you want to use this setting, make sure to generate a random 64-bit number with a cryptographically secure
random number generator. With this value set and SecureBootModel valid and not Disabled it is possible to
achieve Full Security of Apple Secure Boot.

To start using personalised Apple Secure Boot you will have to reinstall the operating system or personalise it.
Until your operating system is personalised you will only be able to load macOS DMG recovery. If you do not have
DMG recovery you could always download it with macrecovery utility and put to com.apple.recovery.boot
as explained in [Tips and Tricks] section. Keep in mind that [DMG Toading| needs to be set to Signed to use any
DMG with Apple Secure Boot.

To personalise an existing operating system use bless command after loading to macOS DMG recovery. Mount
the system volume partition, unless it has already been mounted, and execute the following command:

bless bless —-folder "/Volumes/Macintosh HD/System/Library/CoreServices" \
~~bootefi ~~personalize

When reinstalling the operating system, keep in mind that current versions of macOS Installer; tested as of
10.15.6,_will usually run out of free memory on the /var/tmp partition when trying to install macOS with
the personalised Apple Secure Boot. Soon after downloading the macOS installer image an Unable to verify
macOS error message will appear. To workaround this issue allocate a dedicated RAM disk of 2 MBs for macOS.
personalisation by entering the following commands in macOS recovery terminal before starting the installation:

disk=$(hdiutil attach —nomount ram://4096)
diskutil erasevolume HES+ SecureBoot $disk
diskutil unmount $disk

mkdir /var/tmp/0SPersonalizationTem
diskutil mount -mountpoint /var/tmp/0OSPersonalizationTemp $disk

. AuthRestart

Type: plist boolean

Failsafe: false

Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. To perform
authenticated restart one can use a dedicated terminal command: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restart by saving disk encryption key split in NVRAM and RT'C, which
despite being removed as soon as OpenCore starts, may be considered a security risk and thus is optional.

. BootProtect

Type: plist string
Failsafe: None
Description: Attempt to provide bootloader persistence.

Valid values:

40

https://github.com/acidanthera/bugtracker/issues/995
https://support.apple.com/en-us/HT208330

e None — do nothing.

o Bootstrap — create or update top-priority \EFI\OC\Bootstrap\Bootstrap.efi boot option (Boot9696)
in UEFT variable storage at bootloader startup. For this option to work RequestBootVarRouting is required
to be enabled.

This option provides integration with third-party operating system installation and upgrade at the times they
overwrite \EFI\BOOT\BOOTx64.efi file. By creating a custom option in Bootstrap mode this file path becomes
no longer used for bootstraping OpenCore.

Note 1: Some firmewares may have broken NVRAM, no boot option support, or various other incompatibilities
of any kind. While unlikely, the use of this option may even cause boot failure. Use at your own risk on boards
known to be compatible.

Note 2: Be warned that while NVRAM reset executed from OpenCore should not erase the boot option created
in Bootstrap, executing NVRAM reset prior to loading OpenCore will remove it.

Failsafe: Signed
Description: Define Disk Image (DMG) loading policy used for macOS Recovery.

Valid values:

* Disabled —_ loading DMG images will fail. Disabled policy will still let macOS Recovery to load in most
cases as there usually are boot . efi files compatible with Apple Secure Boot. Manually downloaded DMG
images stored in com.apple.recovery.boot directories will not load, however.

* Signed __only Apple-signed DMG images will load. Due to Apple Secure Boot design Signed policy will
let any Apple-signed macOS Recovery to load regardless of Apple Secure Boot state, which may not always
be desired.

* Any — any DMG images will mount as normal filesystems. Any policy is strongly not recommended and
will cause a hoot failure when Apple Secure Boot is activated.

Type: plist boolean

Description: Enable password protection to allow sensitive operations.

Password protection ensures that sensitive operations like booting a non-default operating system (e.g. macOS
recovery or a tool), resetting NVRAM storage, trying to boot into a non-default mode (e.g. verbose mode or

safe mode) are not allowed without explicit user authentication by a custom password. Currently password and
salt are hashed with 5000000 iterations of SHA-512.

Note: This functionality is currently in development and is not ready for daily usage.

. ExposeSensitiveData

Type: plist integer

Failsafe: 0x6

Description: Sensitive data exposure bitmask (sum) to operating system.

e 0x01 — Expose printable booter path as an UEFI variable.

e 0x02 — Expose OpenCore version as an UEFI variable.

e 0x04 — Expose OpenCore version in boot picker menu title.
e 0x08 — Expose OEM information as a set of UEFI variables.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

u=$ (nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([7,1*\),.*/\1/"); \
if ["$u" !'= ""]; then sudo diskutil mount $u ; fi

41

10.

11.

12.

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:opencore-version

To obtain OEM information use the following commands in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-product # SMBIOS Typel ProductName
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-vendor # SMBIOS Type2 Manufacturer
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-board # SMBIOS Type2 ProductName

HaltLevel

Type: plist integer, 64 bit

Failsafe: 0x80000000 (DEBUG_ERROR)

Description: EDK IT debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

PasswordHash

Failsafe: all zero

Description; Password hash used when EnabledPassword is set.
PasswordSalt

Type: plist data
Failsafe: empt
Description: Password salt used when EnabledPassword is set.

Vault

Type: plist string

Failsafe: Secure

Description: Enables vaulting mechanism in OpenCore.

Valid values:

e Optional — require nothing, no vault is enforced, insecure.

e Basic — require vault.plist file present in 0C directory. This provides basic filesystem integrity verification
and may protect from unintentional filesystem corruption.

e Secure — require vault.sig signature file for vault.plist in 0OC directory. This includes Basic integrity
checking but also attempts to build a trusted bootchain.

vault.plist file should contain SHA-256 hashes for all files used by OpenCore. Presence of this file is highly
recommended to ensure that unintentional file modifications (including filesystem corruption) do not happen
unnoticed. To create this file automatically use create_vault.sh script. Regardless of the underlying filesystem,
path name and case must match between config.plist and vault.plist.

vault.sig file should contain a raw 256 byte RSA-2048 signature from SHA-256 hash of vault.plist. The
signature is verified against the public key embedded into OpenCore.efi. To embed the public key you should
do either of the following:

o Provide public key during the OpenCore.efi compilation in OpenCoreVault.c file.
e Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN 0C VAULT= and ==END
0C VAULT== ASCII markers.

RSA public key 520 byte format description can be found in Chromium OS documentation. To convert public
key from X.509 certificate or from PEM file use RsaTool.

The complete set of commands to:

e Create vault.plist.

o Create a new RSA key (always do this to avoid loading old configuration).
¢ Embed RSA key into OpenCore.efi.

o Create vault.sig.

Can look as follows:

42

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault
https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c
https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault

o 0C_SCAN_ALLOW_DEVICE_SATA
o 0C_SCAN_ALLOW_DEVICE_SASEX
o 0C_SCAN_ALLOW_DEVICE_SCSI
o 0C_SCAN_ALLOW_DEVICE_NVME

14. SecureBootModel

Type: plist strin
Failsafe: Default

Description: Apple Secure Boot hardware model.

Sets Apple Secure Boot hardware model and policy. Specifying this value defines which operating systems will
be bootable. Operating systems shipped before the specified model was released will not boot. Valid values:

e Default — Recent available model, currently set to j137.

+ Disabled - No model, Secure Boot will be disabled.

j137 _iMacProl,1 (December 2017) minimum macOS 10.13.2 (17C2111)
e j680 — MacBookPro15,1 (July 2018) minimum mac0S 10.13.6 (17G2112)
e j132 — MacBookPro15,2 (July 2018) minimum macO0S 10.13.6 (17G2112)

* 140k _ MacBookAir8,1 (October 2018) minimum mac0S 10.14.1 (18B2084)

3160 —— MacPro7,1 (December 2019) minimum macQS 10.15.1 (19B88)
e j230k — MacBookAir9,1 (March 2020) minimum macOS 10.15.3 (19D2064)

PlatformInfo and SecureBootModel are independent, allowing to enabling Apple Secure Boot with any SMBIOS.
Setting SecureBootModel to any valid value but Disabled is equivalent to Medium Security of Apple Secure
Boot. To achieve Full Security one will need to also specify ApECID value.

Enabling Apple Secure Boot is more demanding to incorrect configurations, bu macOS installations, and
unsupported setups. Things to keep in mind:

(a) Just like on T2 Macs you will not be able to install any unsigned kernel drivers and several signed kernel
drivers including NVIDIA Web Drivers.

(b) The list of cached drivers may be different, resulting in the need to change the list of Added or Forced
kernel drivers, For example, 1080211Family cannot be injected in this case.

(c) System volume alterations on operating systems with sealing, like macOS 11, may result in the operating
system being unbootable. Do not try to disable system volume encryption unless you disable Apple Secure
Boot.

(d) If your platform requires certain settings, but they were not enabled, because the obvious issues did not
trigger before, you may get boot failure. Be extra carcful with IgnorelInvalidFlexRatio or HashServices.

(e) Operating systems released before Apple Secure Boot landed (e.g. macOS 10.12 or earlier) will still boot

until UEFT Secure Boot is enabled. This is so, because from Apple Secure Boot point they are treated as
incompatible and are assumed to be handled by the firmware just like Microsoft Windows is.

(f) On older CPUs (e.g. before Sandy Bridge) enabling Apple Secure Boot might cause slightly slower loadin
by up to 1 second.

(g) Since Default value will increase with time to support the latest major release operating system, it is not
recommended to use ApECID and Default value together.

Sometimes the already installed operating system may have outdated Apple Secure Boot manifests on the
Preboot partition causing boot failure. If you see the “OCB: Apple Secure Boot prohibits this boot entry,
enforcing!” message, it is likely the case. When this happens you can either reinstall the operating system

or copy the manifests (files with .im4m extension, like boot.efi.j137.im4m) from /usr/standalone/i386 to

44

https://support.apple.com/en-us/HT208330

/Volumes/Preboot/<UUID>/System/Library/CoreServices. Here <UUID> is your system volume identifier.
For more details on how to configure Apple Secure Boot with UEFI Secure Boot refer to [UEFT Secure Boot]|

Entry Properties

. Arguments

Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

Auxiliary

Type: plist boolean

Failsafe: false

Description: This entry will not be listed by default when HideAuxiliary is set to true.

Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This entry will not be listed unless set to true.

Name

Type: plist string

Failsafe: Empty string

Description: Human readable entry name displayed in boot picker.

Path

Type: plist string

Failsafe: Empty string

Description: Entry location depending on entry type.

e Entries specify external boot options, and therefore take device paths in Path key. These values are not
checked, thus be extremely careful. Example: PciRoot (0x0) /Pci(0x1,0x1)/.../\EFI\COOL.EFI

e Tools specify internal boot options, which are part of bootloader vault, and therefore take file paths relative
to 0C/Tools directory. Example: OpenShell.efi.

45

9 NVRAM

9.1 Introduction

Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer
to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware
intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID) representing
which ‘section’ NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

+ 4D1EDE05-38C7-4A6A-9CC6-4BCCAS8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
« 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)

+ 8BE4DF61-93CA-11D2-AAOD-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)

+ 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by PlatformNVRAM or subsections of section. Please
ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

For proper macOS functioning it is often required to use OC_FIRMWARE_RUNTIME protocol implementation currently
offered as a part of OpenRuntime driver. While it brings any benefits, there are certain limitations which arise depending
on the use.

1. Not all tools may be aware of protected namespaces.
When RequestBootVarRouting is used Boot-prefixed variable access is restricted and protected in a separate
namespace. To access the original variables tools have to be aware of 0C_FIRMWARE_RUNTIME logic.

9.2 Properties

1. Add
Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist metadata format. GUIDs must be provided in canonic string format in upper
or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set.
Variables will only be set if not present or deleted. I.e. to overwrite an existing variable value add the variable

name to the Delete section. This approach enables to provide default values till the operating system takes the
lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

2. Delete
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

3. LegacyEnable
Type: plist boolean
Failsafe: false
Description: Enables loading of NVRAM variable file named nvram.plist from EFI volume root.

This file must have root plist dictionary type and contain two fields:

e Version — plist integer, file version, must be set to 1.
e Add — plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to Delete (and Add) phases. Unless LegacyOverwrite is enabled, it will not
overwrite any existing variable. Variables allowed to be set must be specified in LegacySchema. Third-party
scripts may be used to create nvram.plist file. An example of such script can be found in Utilities. The use of
third-party scripts may require ExposeSensitiveData set to 0x3 to provide boot-path variable with OpenCore
EFT partition UUID.

46

https://en.wikipedia.org/wiki/Universally_unique_identifier

WARNINGWarning: This feature is very dangerous as it passes unprotected data to your firmware variable
services. Use it only when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacyOverwrite
Type: plist boolean
Failsafe: false
Description: Permits overwriting firmware variables from nvram.plist.

Note: Only variables accessible from the operating system will be overwritten.

5. LegacySchema
Type: plist dict
Description: Allows setting select NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.

You can use * value to accept all variables for select GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args
or csr-active-config, as this can bypass SIP.

6. WriteFlash
Type: plist boolean
Failsafe: false
Description: Enables writing to flash memory for all added variables.

Note: This value is recommended to be enabled on most firmwares, but is left configurable for firmwares that
may have issues with NVRAM variable storage garbage collection or alike.

To read NVRAM variable value from macOS one could use nvram by concatenating variable GUID and name separated
by : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables|

9.3 Mandatory Variables
WarringWarning: These variables may be added by PlatformNVRAM or subsections of section.

Using PlatformInfo is the recommend way of setting these variables.
The following variables are mandatory for macOS functioning:

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB
BoardSerialNumber. Present on newer Macs (20134 at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM
Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

9.4 Recommended Variables
The following variables are recommended for faster startup or other improvements:

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:csr-active-config
32-bit System Integrity Protection bitmask. Declared in XNU source code in [csr.h.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures
Combined FirmwareFeatures and ExtendedFirmwareFeatures. Present on newer Macs to avoid extra parsing
of SMBIOS tables

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask
Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

47

https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0
https://opensource.apple.com/source/xnu/xnu-4570.71.2/bsd/sys/csr.h.auto.html

10 PlatformInfo

Platform information is comprised of several identification fields generated or filled manually to be compatible with
macOS services. The base part of the configuration may be obtained from AppleModels| which itself generates a set of
interfaces based on a database in [YAML format. These fields are written to three select destinations:

« SMBIOS
e Data Hub
« NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 |[SmBios.h header file.
However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than one
field and/or destination, so there are two ways to control their update process: manual, where one specifies all the
values (the default), and semi-automatic, where (Automatic) only select values are specified, and later used for system
configuration.

To inspect SMBIOS contents dmidecode utility can be used. Version with macOS specific enhancements can be
downloaded from |Acidanthera/dmidecodel

10.1 Properties

1. Automatic
Type: plist boolean
Failsafe: false
Description: Generate PlatformInfo based on Generic section instead of using values from DataHub, NVRAM,
and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough:

e When enabled SMBIOS, DataHub, and PlatformNVRAM data is unused.
e When disabled Generic section is unused.

Warning: It is strongly discouraged set this option to false when intending to update platform information.

The only reason to do that is when doing minor correction of the SMBIOS present and alike. In all other cases
not using Automatic may lead to hard to debug errors.

2. UpdateDataHub
Type: plist boolean
Failsafe: false
Description: Update Data Hub fields. These fields are read from Generic or DataHub sections depending on
Automatic value.

3. UpdateNVRAM
Type: plist boolean
Failsafe: false
Description: Update NVRAM fields related to platform information.

These fields are read from Generic or PlatformNVRAM sections depending on Automatic value. All the other
fields are to be specified with NVRAM section.

If UpdateNVRAM is set to false the aforementioned variables can be updated with [NVRAM section. If UpdateNVRAM
is set to true the behaviour is undefined when any of the fields are present in NVRAM section.

4. UpdateSMBIOS
Type: plist boolean
Failsafe: false
Description: Update SMBIOS fields. These fields are read from Generic or SMBIOS sections depending on
Automatic value.

5. UpdateSMBIOSMode
Type: plist string
Failsafe: Create
Description: Update SMBIOS fields approach:

o1

https://github.com/acidanthera/OpenCorePkg/blob/master/AppleModels
https://yaml.org/spec/1.2/spec.html
https://www.dmtf.org/standards/smbios
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Intel/Protocol/DataHub.h
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/SmBios.h
http://www.nongnu.org/dmidecode
https://github.com/acidanthera/dmidecode/releases

e TryOverwrite — Overwrite if new size is <= than the page-aligned original and there are no issues with
legacy region unlock. Create otherwise. Has issues with some firmwares.

e Create — Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without
any fallbacks.

e Overwrite — Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size.
Abort with unspecified state otherwise.

o Custom — Write SMBIOS tables (gEfiSmbios (3) TableGuid) to gOcCustomSmbios (3) TableGuid to workaround
firmwares overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires
patching AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" -
"EBOD2D35" (in ASCII), done automatically by CustomSMBIOSGuid quirk.

Note: A side effect of using Custom approach is making SMBIOS updates exclusive to macOS, avoiding a collission
with existing Windows activation and custom OEM software but potentially breaking Apple-specific tools.

6. Generic
Type: plist dictonary
Optional—When-Autematic isfaltseDescription: Update all fields. This section is read only when Automatic

is active.

7. DataHub
Type: plist dictonary
Optional: When Automatic is true
Description: Update Data Hub fields. This section is read only when Automatic is not active.

8. PlatformNVRAM
Type: plist dictonary
Optional: When Automatic is true
Description: Update platform NVRAM fields. This section is read only when Automatic is not active.

9. SMBIOS
Type: plist dictonary
Optional: When Automatic is true
Description: Update SMBIOS fields. This section is read only when Automatic is not active.

10.2 Generic Properties

1. SpoofVendor
Type: plist boolean
Failsafe: false
Description: Sets SMBIOS vendor fields to Acidanthera.

It is dangerous to use Apple in SMBIOS vendor fields for reasons given in SystemManufacturer description.
However, certain firmwares may not provide valid values otherwise, which could break some software.

2. AdviseWindows
Type: plist boolean
Failsafe: false
Description: Forces Windows support in FirmwareFeatures.

Added bits to FirmwareFeatures:

o FW_FEATURE_SUPPORTS_CSM_LEGACY_MODE (0x1) - Without this bit it is not possible to reboot to Windows
installed on a drive with EFI partition being not the first partition on the disk.

o FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) - Without this bit it is not possible to reboot to
Windows installed on a drive with EFI partition being the first partition on the disk.

3. SystemProductName
Type: plist string
Failsafe: MacPro6,1
Description: Refer to SMBIOS SystemProductName.

4. SystemSerialNumber
Type: plist string

52

AudioDxe™*

CrScreenshotDxe*

ExFatDxe

HfsPlus

HiiDatabase™

EnhancedFatDxe

NvmExpressDxe™

OpenCanopy®
OpenRuntime’*
OpenUsbKbDxe*

PartitionDxe

Ps2KeyboardDxe™*

Ps2MouseDxe*

UsbMouseDxe’*

VBoxHfs

XhciDxe™*

HDA audio support driver in UEFI firmwares for most Intel and some other analog audio
controllers. Staging driver, refer to acidanthera/bugtracker#740 for known issues in AudioDxe.
Screenshot making driver saving images to the root of OpenCore partition (ESP) or any avail-
able writeable filesystem upon pressing F10. This is a modified version of CrScreenshotDxe
driver by |[Nikolaj Schlej.

Proprietary ExFAT file system driver for Bootcamp support commonly found in Apple
firmwares. For Sandy Bridge and earlier CPUs ExFatDxeLegacy driver should be used due
to the lack of RDRAND instruction support.

Proprietary HFS file system driver with bless support commonly found in Apple firmwares.
For Sandy Bridge and earlier CPUs HfsPlusLegacy driver should be used due to the lack of
RDRAND instruction support.

HII services support driver from MdeModulePkg. This driver is included in most firmwares
starting with Ivy Bridge generation. Some applications with the GUI like UEFI Shell may
need this driver to work properly.

FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares, and
cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT
support implementation, which leads to corrupted filesystems on write attempt. Embedding
this driver within the firmware may be required in case writing to EFI partition is needed
during the boot process.

NVMe support driver from MdeModulePkg. This driver is included in most firmwares starting
with Broadwell generation. For Haswell and earlier embedding it within the firmware may be
more favourable in case a NVMe SSD drive is installed.

OpenCore plugin implementing graphical interface.

[OpenCore plugin| implementing 0C_FIRMWARE_RUNTIME protocol.

USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a
custom USB keyboard driver implementation. This is an alternative to builtin KeySupport,
which may work better or worse depending on the firmware.

Proprietary partition management driver with Apple Partitioning Scheme support commonly
found in Apple firmwares. This driver can be used to support loading older DMG recoveries
such as macOS 10.9 using Apple Partitioning Scheme. For Sandy Bridge and earlier CPUs
PartitionDxeLegacy driver should be used due to the lack of RDRAND instruction support.

PS/2 keyboard driver from MdeModulePkg. OpenDuetPkg and some firmwares may not include
this driver, but it is necessary for PS/2 keyboard to work. Note, unlike OpenUsbKbDxe this
driver has no AppleKeyMapAggregator support and thus requires KeySupport to be enabled.
PS/2 mouse driver from MdeModulePkg. Some very old laptop firmwares may not include
this driver, but it is necessary for touchpad to work in UEFI graphical interfaces, such as
OpenCanopy.

USB mouse driver from MdeModulePkg. Some virtual machine firmwares like OVMF may not
include this driver, but it is necessary for mouse to work in UEFI graphical interfaces, such
as OpenCanopy.

HEFES file system driver with bless support. This driver is an alternative to a closed source
HfsPlus driver commonly found in Apple firmwares. While it is feature complete, it is
approximately 3 times slower and is yet to undergo a security audit.

XHCI USB controller support driver from MdeModulePkg. This driver is included in most
firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it
may be used to support external USB 3.0 PCI cards.

Driver marked with * are bundled with OpenCore. To compile the drivers from UDK (EDK II) use the same command
you normally use for OpenCore compilation, but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK

cd UDK

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc

build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

60

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker/issues/740
https://github.com/acidanthera/OpenCorePkg
https://github.com/LongSoft/CrScreenshotDxe
https://github.com/NikolajSchlej
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/audk

Other — Custom entry (see Entries).

ResetNVRAM — Reset NVRAM system action or tool.
Shell — Entry with UEFT Shell name (e.g. OpenShell).
Tool — Any other tool.

Predefined labels are put to \EFI\OC\Resources\Label directory. Each label has .1bl or .12x suffix to represent the
scaling level. Full list of labels is provided below. All labels are mandatory.

EFIBoot — Generic OS.

Apple — Apple OS.

AppleRecv — Apple Recovery OS.

AppleTM — Apple Time Machine.

Windows — Windows.

Other — Custom entry (see Entries).

ResetNVRAM — Reset NVRAM system action or tool.
Shell — Entry with UEFI Shell name (e.g. OpenShell).
Tool — Any other tool.

Label and icon generation can be performed with bundled utilities: disklabel and icnspack. Please refer to sample
data for the details about the dimensions. Font is Helvetica 12 pt times scale factor.

Font format corresponds to [AngelCode binary BMF. While there are many utilities to generate font files, currently it is
recommended to use |dpFontBaker to generate bitmap font (using CoreText produces best results) and fonverter to
export it to binary format.

11.5 OpenRuntime

OpenRuntime is an OpenCore plugin implementing 0C_FIRMWARE_RUNTIME protocol. This protocol implements multiple
features required for OpenCore that are otherwise not possible to implement in OpenCore itself as they are needed to
work in runtime, i.e. during operating system functioning. Feature highlights:

NVRAM namespaces, allowing to isolate operating systems from accessing select variables (e.g. RequestBootVarRouting
or ProtectSecureBoot).

Read-only and write-only NVRAM variables, enhancing the security of OpenCore, Lilu, and Lilu plugins, like
VirtualSMC, which implements AuthRestart support.

NVRAM isolation, allowing to protect all variables from being written from an untrusted operating system (e.g.
DisableVariableWrite).

UEFI Runtime Services memory protection management to workaround read-only mapping (e.g. EnableWriteUnprotector).

11.6 Properties

1.

APFS

Type: plist dict

Failsafe: None

Description: Provide APFS support as configured in APFS Properties section below.

Audio

Type: plist dict

Failsafe: None

Description: Configure audio backend support described in Audio Properties section below.

Audio support provides a way for upstream protocols to interact with the selected hardware and audio resources.
All audio resources should reside in \EFI\OC\Resources\Audio directory. Currently the only supported audio
file format is WAVE PCM. While it is driver-dependent which audio stream format is supported, most common
audio cards support 16-bit signed stereo audio at 44100 or 48000 Hz.

62

https://www.angelcode.com/products/bmfont
https://github.com/danpla/dpfontbaker
https://github.com/danpla/dpfontbaker/pull/1
https://github.com/usr-sse2/fonverter

Currently two renderers are supported: Builtin and System. System renderer uses firmware services for text
rendering. Builtin bypassing firmware services and performs text rendering on its own. Different renderers
support a different set of options. It is recommended to use Builtin renderer, as it supports HiDPI mode and
uses full screen resolution.

UEFTI firmwares generally support ConsoleControl with two rendering modes: Graphics and Text. Some
firmwares do not support ConsoleControl and rendering modes. OpenCore and macOS expect text to only be
shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by UEFI specification,
exact behaviour varies.

Valid values are combinations of text renderer and rendering mode:

e BuiltinGraphics — Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.
* BuiltinText —_ Switch to Text mode and use Builtin renderer with custom ConsoleControl.

e SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.

e SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.

e SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms it is necessary to enable

ProvideConsoleGop, set Resolution to Max. BuiltinText variant is an alternative BuiltinGraphics for some
very old and buggy laptop firmwares, which can only draw in Text mode.

The use of System protocols is more complicated. In general the preferred setting is SystemGraphics or
SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, namely MacPro5,1, may have broken console output with newer GPUs, and thus only
BuiltinGraphics may work for them.

. ConsoleMode

Type: plist string

Failsafe: Empty string

Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string.

Set to empty string not to change console mode. Set to Max to try to use largest available console mode. Currently
Builtin text renderer supports only one console mode, so this option is ignored.

Note: This field is best to be left empty on most firmwares.

. Resolution

Type: plist string

Failsafe: Empty string

Description: Sets console output screen resolution.

e Set to WxH@Bpp (e.g. 1920x1080032) or WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if available.

e Set to empty string not to change screen resolution.

e Set to Max to try to use largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in Builtin text renderer, FileVault 2 UEFI password interface, and boot screen logo. Refer to

[Recommended Variables| section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop set to true.

. ClearScreenOnModeSwitch

Type: plist boolean

Failsafe: false

Description: Some firmwares clear only part of screen when switching from graphics to text mode, leaving a
fragment of previously drawn image visible. This option fills the entire graphics screen with black colour before
switching to text mode.

Note: This option only applies to System renderer.

68

Some firmwares do not implement legacy UGA protocol, but it may be required for screen output by older EFI
applications like EfiBoot from 10.4.

11.11 ProtocolOverrides Properties

1.

AppleAudio

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple audio protocols with builtin versions.

Apple audio protocols allow macOS bootloader and OpenCore to play sounds and signals for screen reading or
audible error reporting. Supported protocols are beep generation and VoiceOver. VoiceOver protocol is specific to
Gibraltar machines (T2) and is not supported before macOS High Sierra (10.13). Instead older macOS versions
use AppleHDA protocol, which is currently not implemented.

Only one set of audio protocols can be available at a time, so in order to get audio playback in OpenCore user
interface on Mac system implementing some of these protocols this setting should be enabled.

Note: Backend audio driver needs to be configured in UEFI Audio section for these protocols to be able to stream
audio.

AppleBootPolicy

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs or legacy Macs.

Note: Some Macs, namely MacPro5, 1, do have APFS compatibility, but their Apple Boot Policy protocol contains
recovery detection issues, thus using this option is advised on them as well.

AppleDebuglog

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple Debug Log protocol with a builtin version.

. AppleEvent

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple Event protocol with a builtin version. This may be used to ensure File Vault 2
compatibility on VMs or legacy Macs.

AppleFramebufferInfo

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple Framebuffer Info protocol with a builtin version. This may be used to override
framebuffer information on VMs or legacy Macs to improve compatibility with legacy EfiBoot like the one in
macOS 10.4.

AppleImageConversion

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple Image Conversion protocol with a builtin version.

Type: plist boolean

Description: Reinstalls Apple IMG4 Verification protocol with a builtin version. This protocol is used to verify
imdm manifest files used by Apple Secure Boot.

AppleKeyMap

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple Key Map protocols with builtin versions.

70

10.

11.

12.

13.

14.

15.

16.

17.

18.

AppleRtcRam

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple RTC RAM protocol with builtin version.

Note: Builtin version of Apple RTC RAM protocol may filter out I/O attempts to select RT'C memory addresses.
The list of addresses can be specified in 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102: rtc-blacklist variable as
a data array.

AppleSecureBoot
Type: plist boolean

Description: Reinstalls Apple Secure Boot protocol with a builtin version.

AppleSmcIo

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple SMC I/0O protocol with a builtin version.

This protocol replaces legacy VirtualSmc UEFI driver, and is compatible with any SMC kernel extension.
However, in case FakeSMC kernel extension is used, manual NVRAM key variable addition may be needed.

AppleUserInterfaceTheme

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple User Interface Theme protocol with a builtin version.

DataHub

Type: plist boolean

Failsafe: false

Description: Reinstalls Data Hub protocol with a builtin version. This will delete all previous properties if the
protocol was already installed.

DeviceProperties

Type: plist boolean

Failsafe: false

Description: Reinstalls Device Property protocol with a builtin version. This will delete all previous properties
if it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

FirmwareVolume

Type: plist boolean

Failsafe: false

Description: Forcibly wraps Firmware Volume protocols or installs new to support custom cursor images for
File Vault 2. Should be set to true to ensure File Vault 2 compatibility on everything but VMs and legacy Macs.

Note: Several virtual machines including VMware may have corrupted cursor image in HiDPI mode and thus
may also require this setting to be enabled.

HashServices

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls Hash Services protocols with builtin versions. Should be set to true to ensure
File Vault 2 compatibility on platforms providing broken SHA-1 hashing. Can be diagnosed by invalid cursor size
with UIScale set to 02, in general platforms prior to APTIO V (Haswell and older) are affected.

0SInfo

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls OS Info protocol with builtin versions. This protocol is generally used to receive
notifications from macOS bootloader, by the firmware or by other applications.

UnicodeCollation
Type: plist boolean

71

12 Troubleshooting

12.1 Legacy Apple OS

Older operating systems may be more complicated to install, but sometimes can be necessary to use for all kinds of
reasons. While a compatible board identifier and CPUID are the obvious requiremenets for proper functioning of an
older operating system, there are many other less obvious things to keep in mind. This section tries to cover a common.
set_of issues relevant to installing older macOS operating systems.

12.1.1 macOS 10.8 and 10.9

o Disk images on these systems use Apple Partitioning Scheme and will require the proprietary PartitionDxe
driver to run DMG recovery and installation. It is possible to set DmgLoading to Disabled to run the recovery
without DMG loading avoiding the need for PartitionDxe.

e Cached kernel images often do not contain family drivers for networking (IONetworkingFamily) or audio

I0AudioFamily) requiring one to use Force loading in order to inject networking or audio drivers.

1212 macOS 10.7

o All previous issues apply.

e Many kexts, including Lilu and its plugins, are unsupported on macOS 10.7 and older as they require newer
kernel APIs, which are not part of the macOS 10.7 SDK.

e Prior to macOS 10.8 KASLR sliding is not supported, which will result in memory allocation failures on firmwares
that utilise lower memory for their own purposes. Refer to lacidanthera/bugtracker#1125 for tracking.

o 32-bit kernel interaction is unsupported and will lead to issues like kernel patching or injection failure.

12.1.3 macOS 10.6

o All previous issues apply.

* Last released installer images for macOS 10.6 are macOS 10.6.7 builds 10J3250 (for MacBookPro8,x) and
1034139 (for iMac12,x), without Xcode). These images are limited to their target model identifiers and have no.
~no_compat_check boot argument support. Modified images (with ACDT suffix) without model restrictions can
be found here, assuming that you legally own macOS 10.6. Read DIGEST.txt for more details. Keep in mind,
that these are the earliest tested versions of macOS 10.6 with OpenCore.

You can also patch out model checking yourself by editing 0SInstall.mpkg with e.g. Flat Package Editor by
making Distribution script to always return true in hwbeModelCheck function. Since updating the only file in the
image and not_corrupting other files can be difficult and may cause slow booting due to kernel cache date changes, it
is recommended to script image rebuilding as shown below:

Original.dmg is original image, 0SInstall.mpkg is patched package
mkdir RO
hdiutil mount Original.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RO

cp RO/.DS Store DS STORE

m rf RO

hdiutil conmvert Original.dmg ~format UDRW —o ReadWrite.dmg

mkdir RW

xattr —c OSInstall.mpkg

hdiutil mount ReadWrite.dmg “noverify —moautoopen -nmoautoopenrw —moautofsck -mountpoint RW

cp 0SInstall.mpkg RW/System/Installation/Packages/0SInstall.mpk
killall Finder fseventsd

rm _—rf RW/.fseventsd
cp DS_STORE RW/.DS Store
m _—rf DS_STORE RW

74

https://github.com/acidanthera/bugtracker/issues/1125
https://mega.nz/folder/z5YUhYTb#gA_IRY5KMuYpnNCg7kR3ug

hdiutil convert ReadWrite.dmg -format UDZO -o ReadOnly.dm

12.2 UEFI Secure Boot

OpenCore is designed to provide a secure boot chain between your firmware and your operating system. On most
x86 platforms trusted loading is implemented via UEFI Secure Boot| model. Not only OpenCore fully supports this
model, but it also extends its capabilities to ensure sealed configuration via vaulting and provide trusted loading to
the operating systems using custom verification, such as[Apple Secure Boot} Proper secure boot, chain requires several
steps and careful configuration of select settings as explained below:

1.

10.

11.

Enable Apple Secure Boot by setting SecureBootModel if you need to run macOS. Note, that not every macOS
is compatible with Apple Secure Boot and there are several other restrictions as explained in [Apple Secure Boot]

section.

Disable DMG loading by setting DmgLoading to Disabled if you are concerned of loading old vulnerable DMG
recoveries. This is not required, but recommended. For the actual tradeoffs see the details in

Make sure that APFS JumpStart functionality restricts the loading of old vulnerable drivers by setting MinDate
and MinVersion to 0. More details are provided in APFS JumpStart section. An alternative is to_install
apfs.efi driver manually.

Make sure that you do not need Force driver loading and can still boot all the operating systems you need.

Make sure that ScanPolicy restricts loading from undesired devices. It is a good idea to prohibit all removable
drivers or unknown filesystems.

Sign all the installed drivers and tools with your private key. Do not sign tools that provide administrative access
to your computer, like UEFT Shell.

Vault your configuration as explained section,

Sign all OpenCore binaries (BOOTX64.efi, BOOTIa32.efi, Bootstra
with the same private key.

Sign all third-party operating system (not made by Microsoft or Apple) bootloaders if you need them. For Linux

there is an option to install Microsoft-signed Shim bootloader as explained on e.g. Debian Wiki._

Enable UEFI Secure Boot in your firmware preferences and install the certificate with a private key you own.
Details on how to generate a certificate can be found in various articles, like [this one), and are out of the scope of
this document. If you need to launch Windows you will also need to add the Microsoft Windows Production CA

2011._If you need to launch option ROMs or decided to use signed Linux drivers you will also need the Microsoft
UEFI Driver Signing CA._

Password-protect changing firmware settings to ensure that UEFI Secure Boot cannot be disabled without your
knowledge.

.efi, OpenCore.efi) used on this system

12.3 Windows support

Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFT installations as well as systems partially supporting UEFI

boot,

like Windows 7, might work with some extra precautions. Things to keep in mind:
MBR (Master Boot Record) installations are legacy and will not be supported.

All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a 'workaround for this, it is highly recommend not to rely on it and install properly.

Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID.
Be warned, on old firmwares it may be invalid, i.e. not random. In case you still have issues, consider using

75

https://en.wikipedia.org/wiki/UEFI_Secure_Boot
https://wiki.debian.org/SecureBoot
https://habr.com/en/post/273497
http://go.microsoft.com/fwlink/?LinkID=321192
http://go.microsoft.com/fwlink/?LinkID=321192
http://go.microsoft.com/fwlink/?LinkId=321194
http://go.microsoft.com/fwlink/?LinkId=321194
https://github.com/acidanthera/bugtracker/issues/327

3. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

4. How to choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI
Setup, with the macOS Startup Disk| preference, or the Windows |Boot Camp, Control Panel. Since choosing
OpenCore’s BOOTx64.EFI as a primary boot option limits this functionality in addition to several firmwares
deleting incompatible boot options, potentially including those created by macOS, you are strongly encouraged to
use the RequestBootVarRouting quirk, which will preserve your selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

5. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use macrecovery.py, builtin tool.

For offline installation refer to How to create a bootable installer for macOS| article. Apart from App Store and
softwareupdate utility there also are third-party utilities to download an offline image.

6. Why do online recovery images (*.dmg) fail to load?
This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.
7. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
on MacRumors.com.

8. Why do Find&Replace patches must equal in length?

For machine code (x86 code) it is not possible to do differently sized replacements due to relative addressing. For
ACPI code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More
detailed explanation can be found on AppleLife.ru or in the ACPI section of this document.

9. How can I decide which Booter quirks to use?

These quirks originate from AptioMemoryFix driver but provide a wider set of changes specific to modern
systems. Note, that OpenRuntime driver is required for most configurations. To get a configuration similar to
AptioMemoryFix you may try enabling the following set of quirks:

e ProvideConsoleGop (UEFI quirk)
e AvoidRuntimeDefrag

e DiscardHibernateMap

e EnableSafeModeSlide

e EnableWriteUnprotector

e ForceExitBootServices

e ProtectMemoryRegions

e ProvideCustomSlide

¢ RebuildAppleMemoryMap

e SetupVirtualMap

However, as of today such set is strongly discouraged as some of these quirks are not necessary to be enabled or
need additional quirks. For example, DevirtualiseMmio and ProtectUefiServices are often required, while
DiscardHibernateMap and ForceExitBootServices are rarely necessary.

Unfortunately for some quirks like RebuildAppleMemoryMap, EnableWriteUnprotector, ProtectMemoryRegions,
SetupVirtualMap, and SyncRuntimePermissions there is no definite approach even on similar systems, so trying

78

https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macrecovery/macrecovery.py
https://support.apple.com/HT201372
https://github.com/corpnewt/gibMacOS
https://forums.macrumors.com/threads/opencore-on-the-mac-pro.2207814
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Configuration
	Configuration Terms
	Configuration Processing
	Configuration Structure

	Contribution
	Debugging
	Quirks Properties
	Kernel
	Introduction
	Properties
	Add Properties
	Block Properties
	Emulate Properties
	Force Properties
	Patch Properties
	Quirks Properties
	Scheme Properties

	Properties
	Boot Properties
	Debug Properties
	Security Properties
	Entry Properties
	NVRAM
	Introduction
	Properties
	Mandatory Variables
	Recommended Variables

	PlatformInfo
	Properties
	Generic Properties

	OpenRuntime
	Properties
	ProtocolOverrides Properties
	Troubleshooting
	Legacy Apple OS
	UEFI Secure Boot
	Windows support

