
OpenCore

Reference Manual (0.6.1
:::
.2)

[2020.10.04]

Copyright ©2018-2020 vit9696

1 Introduction
This document provides information on OpenCore user configuration file format used to setup

::
set

:::
up

:
the correct

functioning of
:::
the

:
macOS operating system. It is to be read as the official clarification of expected OpenCore behaviour.

All deviations, if found in published OpenCore releases, shall be considered
::
to

:::
be

:
documentation or implementation

bugs , and are requested to be reported through
::::::
which

::::::
should

:::
be

::::::::
reported

:::
via

:::
the

:
Acidanthera Bugtracker. Errata

:::
An

:::::
errata

:
sheet is available in OpenCorePkg repository.

This document is structured as a specification , and is not meant to provide a step by step algorithm for configuring
:::::::::::
step-by-step

:::::
guide

:::
to

::::::::::
configuring

:::
an

:
end-user board support package

:::::
Board

::::::::
Support

::::::::
Package

:
(BSP). The intended

audience of the document are
:
is

:::::::::::
anticipated

::
to

:::
be programmers and engineers with

:
a
:
basic understanding of macOS

internals and UEFI functioning
:::::::::::
functionality. For these reasons,

:
this document is available exclusively in English, and

all other sources or translations of this document are unofficial and may contain errors.

Third-party articles, utilities, books, and alike
:
,
:
may be more useful for a wider audience as they could provide guide-like

material. However, they are prone
::::::
subject

:
to their authors’ preferences, tastes, this document misinterpretation, and

essential
::::::::::::::::
misinterpretations

::
of

::::
this

:::::::::
document,

::::
and

:::::::::::
unavoidable

:
obsolescence. In case you use these sources, for example,

::::
cases

:::
of

:::::
using

::::
such

:::::::
sources,

:::::
such

::
as

:
Dortania’s OpenCore Install Guide and related material, please ensure to follow this

document for every made decision and judge its
::::
refer

:::::
back

::
to

::::
this

:::::::::
document

:::
on

:::::
every

::::::::
decision

:::::
made

::::
and

:::::::::::
re-evaluate

::::::::
potential consequences.

Be warned
:::::
Please

:::::
note

:
that regardless of the sources usedyou

:
,
:::::
users

:
are required to fully understand every dedicated

OpenCore configuration optionand concept prior to reporting any issues in
:
,
::::
and

:::
the

:::::::::
principles

:::::::
behind

::::::
them,

::::::
before

::::::
posting

::::::
issues

::
to

::::
the

:
Acidanthera Bugtracker.

1.1 Generic Terms
• plist — Subset of ASCII Property List format written in XML, also know as XML plist format version

1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

• plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

• plist object — definite realisation of plist type, which may be interpreted as value.

• plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

• plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

• plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

• plist string — printable 7-bit ASCII string, conforms to string.

• plist data — base64-encoded blob, conforms to data.

• plist date — ISO-8601 date, conforms to date, unsupported.

• plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

• plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

• plist real — floating point number, conforms to real, unsupported.

• plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

3

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker
https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Errata/Errata.pdf
https://dortania.github.io
https://dortania.github.io/OpenCore-Install-Guide
https://dortania.github.io/getting-started
https://github.com/acidanthera/bugtracker

loaded by the firmware by default according to UEFI specification, and Bootstrap.efi can be registered as
a custom option to let OpenCore coexist with operating systems using BOOTx64.efi as their own loaders (e.g.
Windows), see BootProtect for more details.

• boot
Duet bootstrap loader, which initialises UEFI environment on legacy BIOS firmwares and loads OpenCore.efi
similarly to other bootstrap loaders. Modern Duet bootstrap loader will default to OpenCore.efi on the same
partition when present.

• ACPI
Directory used for storing supplemental ACPI information for ACPI section.

• Drivers
Directory used for storing supplemental UEFI drivers for UEFI section.

• Kexts
Directory used for storing supplemental kernel information for Kernel section.

• Resources
Directory used for storing media resources, such as audio files for screen reader support. See UEFI Audio
Properties section for more details. This directory also contains image files for graphical user interface. See
OpenCanopy section for more details.

• Tools
Directory used for storing supplemental tools.

• OpenCore.efi
Main booter driver responsible for operating system loading.

• config.plist
OC Config.

• vault.plist
Hashes for all files potentially loadable by OC Config.

• vault.sig
Signature for vault.plist.

• SysReport
Directory containing system reports generated by SysReport option.

• nvram.plist
OpenCore variable import file.

• opencore-YYYY-MM-DD-HHMMSS.txt
OpenCore log file.

• panic-YYYY-MM-DD-HHMMSS.txt
Kernel panic log file.

Note: It is not guaranteed that paths longer than OC_STORAGE_SAFE_PATH_MAX (128 characters including
0-termnator

::::::::::
-terminator) will be accessible within OpenCore.

3.2 Installation and Upgrade
To install OpenCore reflect the Configuration Structure described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information in regards to external resources
like ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate Kext List document available in OpenCore
repository. Vaulting information is provided in Security Properties section of this document.

OC config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. OpenDuetPkg is one of the known
UEFI environment providers for legacy systems. To run OpenCore on such a legacy systemyou can install

:
, OpenDuetPkg

:::
can

:::
be

::::::::
installed with a dedicated tool — BootInstall (bundled with OpenCore). Third-party utilities can be used to

perform this on systems different from
:::::
other

:::::
than macOS.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting
the configuration compared to the previous release, and Changelog.md document, containing the list of modifications
across all published updates.

7

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/corpnewt/gibMacOS

3.3 Contribution
OpenCore can be compiled as an ordinary EDK II package. Since UDK development was abandoned by TianoCore,
OpenCore requires the use of EDK II Stable. Currently supported EDK II release is hosted in acidanthera/audk. The
required patches for the package are present in Patches directory.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow EDK II C Codestyle.

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. Example command sequence may look as follows:

git clone --depth=1 https://github.com/acidanthera/audk UDK
cd UDK
git submodule update --init --recommend-shallow
git clone --depth=1 https://github.com/acidanthera/OpenCorePkg
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be Sublime Text
with EasyClangComplete plugin. Add .clang_complete file with similar content to your

:::
the UDK root:

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/MdeModulePkg
-I/UefiPackages/MdeModulePkg/Include
-I/UefiPackages/MdeModulePkg/Include/X64
-I/UefiPackages/OpenCorePkg/Include/AMI
-I/UefiPackages/OpenCorePkg/Include/Acidanthera
-I/UefiPackages/OpenCorePkg/Include/Apple
-I/UefiPackages/OpenCorePkg/Include/Apple/X64
-I/UefiPackages/OpenCorePkg/Include/Duet
-I/UefiPackages/OpenCorePkg/Include/Generic
-I/UefiPackages/OpenCorePkg/Include/Intel
-I/UefiPackages/OpenCorePkg/Include/Microsoft
-I/UefiPackages/OpenCorePkg/Include/VMware
-I/UefiPackages/OvmfPkg/Include
-I/UefiPackages/UefiCpuPkg/Include
-IInclude
-include
/UefiPackages/MdePkg/Include/Uefi.h
-fshort-wchar
-Wall
-Wextra
-Wno-unused-parameter
-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare
-Wno-sign-compare
-Wno-varargs
-Wno-unused-const-variable
-DOC_TARGET_NOOPT=1
-DNO_MSABI_VA_FUNCS=1

Listing 2: ECC Configuration

8

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/tree/master/external
https://www.sublimetext.com
https://niosus.github.io/EasyClangComplete

Warning: Tool developers modifying config.plist or any other OpenCore files must ensure that their tool checks
for opencore-version NVRAM variable (see Debug Properties section below) and warn the user if the version listed
is unsupported or prerelease. OpenCore configuration may change across the releases and the tool shall ensure that it
carefully follows this document. Failure to do so may result in this tool to be considered as malware and blocked with
all possible means.

3.4 Coding conventions
Just like any other project we have conventions that we follow during the development. All third-party contributors are
highly recommended to read and follow the conventions listed below before submitting their patches. In general it is
also recommended to firstly discuss the issue in Acidanthera Bugtracker before sending the patch to ensure no double
work and to avoid your

:::
the patch being rejected.

Organisation. The codebase is contained in OpenCorePkg repository, which is the primary EDK II package.

• Whenever changes are required in multiple repositories, separate pull requests should be sent to each.
• Committing the changes should happen firstly to dependent repositories, secondly to primary repositories to

avoid automatic build errors.
• Each unique commit should compile with XCODE5 and preferably with other toolchains. In the majority of the

cases it can be checked by accessing the CI interface. Ensuring that static analysis finds no warnings is preferred.
• External pull requests and tagged commits must be validated. That said, commits in master may build but may

not necessarily work.
• Internal branches should be named as follows: author-name-date, e.g. vit9696-ballooning-20191026.
• Commit messages should be prefixed with the primary module (e.g. library or code module) the changes were

made in. For example, OcGuardLib: Add OC_ALIGNED macro. For non-library changes Docs or Build prefixes
are used.

Design. The codebase is written in a subset of freestanding C11 (C17) supported by most modern toolchains used by
EDK II. Applying common software development practices or requesting clarification is recommended if any particular
case is not discussed below.

• Never rely on undefined behaviour and try to avoid implementation defined behaviour unless explicitly covered
below (feel free to create an issue when a relevant case is not present).

• Use OcGuardLib to ensure safe integral arithmetics avoiding overflows. Unsigned wraparound should be relied on
with care and reduced to the necessary amount.

• Check pointers for correct alignment with OcGuardLib and do not rely on the architecture being able to dereference
unaligned pointers.

• Use flexible array members instead of zero-length or one-length arrays where necessary.
• Use static assertions (STATIC_ASSERT) for type and value assumptions, and runtime assertions (ASSERT) for

precondition and invariant sanity checking. Do not use runtime assertions to check for errors as they should never
alter control flow and potentially be excluded.

• Assume UINT32/INT32 to be int-sized and use %u, %d, and %x to print them.
• Assume UINTN/INTN to be of unspecified size, and cast them to UINT64/INT64 for printing with %Lu, %Ld and so

on as normal.
• Do not rely on integer promotions for numeric literals. Use explicit casts when the type is implementation-

dependent or suffixes when type size is known. Assume U for UINT32 and ULL for UINT64.
• Do ensure unsigned arithmetics especially in bitwise maths, shifts in particular.
• sizeof operator should take variables instead of types where possible to be error prone. Use ARRAY_SIZE to

obtain array size in elements. Use L_STR_LEN and L_STR_SIZE macros from OcStringLib to obtain string literal
sizes to ensure compiler optimisation.

• Do not use goto keyword. Prefer early return, break, or continue after failing to pass error checking instead of
nesting conditionals.

• Use EFIAPI, force UEFI calling convention, only in protocols, external callbacks between modules, and functions
with variadic arguments.

• Provide inline documentation to every added function, at least describing its inputs, outputs, precondition,
postcondition, and giving a brief description.

• Do not use RETURN_STATUS. Assume EFI_STATUS to be a matching superset that is to be always used when
BOOLEAN is not enough.

• Security violations should halt the system or cause a forced reboot.

9

https://github.com/acidanthera/bugtracker
https://travis-ci.com/acidanthera

Failsafe: All zero
Description: Match table signature to be equal to this value unless all zero.

In the majority of the cases ACPI patches are not useful and harmful:

• Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices
(e.g. EC and EC0), be unnecessary, or even fail to rename devices in select tables. For ACPI consistency it is much
safer to rename devices at I/O Registry level, as done by WhateverGreen.

• Avoid
:::
Try

::
to

::::::
avoid patching _OSI to support a higher level of feature sets unless absolutely required

::::::::
whenever

:::::::
possible. Commonly this enables a number of hacks on APTIO firmwares, which result in the need to add more
patches. Modern firmwares generally do not need it at all, and those that do are fine with much smaller patches.
::::::::
However,

::::::
laptop

::::::::
vendors

::::::
usually

::::
rely

:::
on

::::
this

:::::::
method

:::
to

:::::::::
determine

::::
the

::::::::::
availability

::
of

:::::::::
functions

:::
like

::::::::
modern

::::
I2C

:::::
input

::::::::
support,

:::::::
thermal

:::::::::::
adjustment

:::
and

:::::::
custom

:::::::
feature

:::::::::
additions.

:

•
:::::
Avoid

::::::::
patching

::::::::::
embedded

:::::::::
controller

:::::
event

:::::
_Qxx

:::
just

:::
for

::::::::
enabling

::::::::::
brightness

:::::
keys.

::::
The

::::::::::::
conventional

:::::::
process

:::
to

:::
find

:::::
these

:::::
keys

:::::::
usually

:::::::
involves

::::::::
massive

:::::::::::
modification

:::
on

::::::
DSDT

::::
and

:::::::
SSDTs

::::
and

:::
the

::::::
debug

::::
kext

::
is
::::
not

::::::
stable

:::
on

:::::
newer

::::::::
systems.

::::::
Please

:::::::
switch

::
to

:::::::
built-in

::::::::::
brightness

:::
key

:::::::::
discovery

::
of

::::::::::::::
BrightnessKeys

:::::::
instead.

:

• Try to avoid hacky changes like renaming _PRW or _DSM whenever possible.

Several cases, where patching actually does make sense, include:

• Refreshing HPET (or another device) method header to avoid compatibility checks by _OSI on legacy hardware.
_STA method with if ((OSFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return 0xF by replacing A0 10 93 4F 53 46 4C 00 with A4 0A 0F A3 A3 A3 A3 A3.

• To provide custom method implementation with in an SSDT, for instance, to report functional key presses on
a laptop

:::::
inject

:::::::::
shutdown

:::
fix

:::
on

::::::
certain

::::::::::
computers, the original method can be replaced with a dummy name by

patching _Q11
::::
PTS with XQ11

::::
ZPTS

:::
and

:::::::
adding

:
a
::::::::
callback

::
to

::::::::
original

:::::::
method.

Tianocore AcpiAml.h source file may help understanding ACPI opcodes.

Note: Patches of different Find and Replace lengths are unsupported as they may corrupt ACPI tables and make you
:::
the

:
system unstable due to area relocation. If you need such changes you may utilise

::::
such

:::::::
changes

::::
are

:::::::
needed,

::::
the

:::::::::
utilisation

::
of

:
“proxy” patching or

:::
the

:::::::
padding

:::
of NOP

::
to

:
the remaining area

:::::
might

::
be

::::::
taken

::::
into

:::::::
account.

4.6 Quirks Properties
1. FadtEnableReset

Type: plist boolean
Failsafe: false
Description: Provide reset register and flag in FADT table to enable reboot and shutdown.

Mainly required on legacy hardware and few laptops. Can also fix power-button shortcuts. Not recommended
unless required.

2. NormalizeHeaders
Type: plist boolean
Failsafe: false
Description: Cleanup ACPI header fields to workaround macOS ACPI implementation bug causing boot crashes.
Reference: Debugging AppleACPIPlatform on 10.13 by Alex James aka theracermaster. The issue is fixed in
macOS Mojave (10.14).

3. RebaseRegions
Type: plist boolean
Failsafe: false
Description: Attempt to heuristically relocate ACPI memory regions. Not recommended.

ACPI tables are often generated dynamically by underlying firmware implementation. Among the position-
independent code, ACPI tables may contain physical addresses of MMIO areas used for device configuration,
usually grouped in regions (e.g. OperationRegion). Changing firmware settings or hardware configuration,
upgrading or patching the firmware inevitably leads to changes in dynamically generated ACPI code, which
sometimes lead to the shift of the addresses in aforementioned OperationRegion constructions.

14

https://github.com/acidanthera/WhateverGreen
https://github.com/acidanthera/BrightnessKeys
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/AcpiAml.h
https://alextjam.es/debugging-appleacpiplatform/

5 Booter

5.1 Introduction
This section allows to apply different kinds of UEFI modifications on Apple bootloader (boot.efi). The modifications
currently provide various patches and environment alterations for different firmwares. Some of these features were
originally implemented as a part of AptioMemoryFix.efi, which is no longer maintained. See Tips and Tricks section
for migration steps.

If you are using this
:::
this

::
is
:::::
used

:
for the first time on a customised firmware, there is a list of checks to do first. Prior

to startingplease ensure that you have
:
,
:::
the

:::::::::
following

::::::::::::
requirements

::::::
should

:::
be

:::::::
fulfilled:

• Most up-to-date UEFI firmware (check your
:::
the

:
motherboard vendor website).

• Fast Boot and Hardware Fast Boot disabled in firmware settings if present.
• Above 4G Decoding or similar enabled in firmware settings if present. Note, that on some motherboards (notably

ASUS WS-X299-PRO) this option causes adverse effects, and must be disabled. While no other motherboards
with the same issue are known, consider this option to be first to check if you have

:::
this

::::::
option

:::::::
should

::
be

::::::::
checked

:::
first

:::::::::
whenever

:
erratic boot failures

:::
are

:::::::::::
encountered.

• DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table deleted.
• No ‘slide‘ boot argument present in NVRAM or anywhere else. It is not necessary unless you cannot boot

:::
the

::::::
system

:::::::
cannot

::
be

:::::::
booted

:
at all or see No slide values are usable! Use custom slide! message

:::
can

:::
be

::::
seen in the log.

• CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Consider patching it if you have
enough skills and no option is available

:::
(for

:::::::::
advanced

:::::
users

:::::
only). See VerifyMsrE2 notes for more details.

• CSM (Compatibility Support Module) disabled in firmware settings if present. You may need to flash GOP ROM
on

::
On

:
NVIDIA 6xx/AMD 2xx or older,

:::::
GOP

::::::
ROM

::::
may

::::
have

:::
to

::
be

:::::::
flashed

::::
first. Use GopUpdate (see the second

post) or AMD UEFI GOP MAKER in case you are not sure how
::
of

::::
any

::::::::
potential

:::::::::
confusion.

• EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.
• VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.
• While it may not be required, sometimes you have to disable Thunderbolt support, Intel SGX, and Intel

Platform Trust
::::
may

:::::
have

::
to

:::
be

::::::::
disabled in firmware settings present.

When debugging sleep issues you may want to (temporarily) disable Power Nap and automatic power off
::::
may

:::
be

::::::::::::
(temporarily)

::::::::
disabled, which appear to sometimes cause wake to black screen or boot loop issues on older platforms.

The particular issues may vary, but in general you should check ACPI tables
:::::
ACPI

::::::
tables

::::::
should

:::
be

::::::
looked

:::
up

:
first.

Here is an example of a bug found in some Z68 motherboards. To turn Power Nap and the others off run the following
commands in Terminal:

sudo pmset autopoweroff 0
sudo pmset powernap 0
sudo pmset standby 0

Note: These settings may reset at hardware change and in certain other circumstances. To view their current state use
pmset -g command in Terminal.

5.2 Properties
1. MmioWhitelist

Type: plist array
Description: Designed to be filled with plist dict values, describing addresses critical for particular firmware
functioning when DevirtualiseMmio quirk is in use. See MmioWhitelist Properties section below.

2. Quirks
Type: plist dict
Description: Apply individual booter quirks described in Quirks Properties section below.

5.3 MmioWhitelist Properties
1. Address

Type: plist integer

16

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

Failsafe: 0
Description: Exceptional MMIO address, which memory descriptor should be left virtualised (unchanged) by
DevirtualiseMmio. This means that the firmware will be able to directly communicate with this memory region
during operating system functioning, because the region this value is in will be assigned a virtual address.

The addresses written here must be part of the memory map, have EfiMemoryMappedIO type and EFI_MEMORY_RUNTIME
attribute (highest bit) set. To find the list of the candidates the debug log can be used.

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This address will be devirtualised unless set to true.

5.4 Quirks Properties
1. AvoidRuntimeDefrag

Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on many firmwares
using SMM backing for select services like variable storage. SMM may try to access physical addresses, but they
get moved by boot.efi.

Note: Most but Apple and VMware firmwares need this quirk.

2. DevirtualiseMmio
Type: plist boolean
Failsafe: false
Description: Remove runtime attribute from select MMIO regions.

This option reduces stolen memory footprint from the memory map by removing runtime bit for known memory
regions. This quirk may result in the increase of KASLR slides available, but is not necessarily compatible with
the target board without additional measures. In general this frees from 64 to 256 megabytes of memory (present
in the debug log), and on some platforms it is the only way to boot macOS, which otherwise fails with allocation
error at bootloader stage.

This option is generally useful on all firmwares except some very old ones, like Sandy Bridge. On select firmwares
it may require a list of exceptional addresses that still need to get their virtual addresses for proper NVRAM and
hibernation functioning. Use MmioWhitelist section to do this.

3. DisableSingleUser
Type: plist boolean
Failsafe: false
Description: Disable single user mode.

This is a security option allowing one to restrict
::::
that

::::::::
restricts

:::
the

:::::::::
activation

::
of
:
single user mode usage by ignoring

CMD+S hotkey and -s boot argument. The behaviour with this quirk enabled is supposed to match T2-based
model behaviour. Read

:::::
Refer

::
to

:
this archived article to understand how to use single user mode with this quirk

enabled.

4. DisableVariableWrite
Type: plist boolean
Failsafe: false
Description: Protect from macOS NVRAM write access.

This is a security option allowing one to restrict
:::
that

::::::::
restricts

:
NVRAM access in macOS. This quirk requires

OC_FIRMWARE_RUNTIME protocol implemented in OpenRuntime.efi.

17

https://web.archive.org/web/20200517125051/https://support.apple.com/en-us/HT201573

Note: This quirk can also be used as an ugly workaround to buggy UEFI runtime services implementations that
fail to write variables to NVRAM and break the rest of the operating system.

5. DiscardHibernateMap
Type: plist boolean
Failsafe: false
Description: Reuse original hibernate memory map.

This option forces XNU kernel to ignore newly supplied memory map and assume that it did not change after
waking from hibernation. This behaviour is required to work by Windows, which mandates to preserve runtime
memory size and location after S4 wake.

Note: This may be used to workaround buggy memory maps on older hardware, and is now considered rare legacy.
Examples of such hardware are Ivy Bridge laptops with Insyde firmware, like Acer V3-571G. Do not use this
unless you fully understand the consequences

:
a
:::::::::
complete

:::::::::::::
understanding

::
of

::::
the

::::::::::::
consequences

:::
can

:::
be

:::::::
ensured.

6. EnableSafeModeSlide
Type: plist boolean
Failsafe: false
Description: Patch bootloader to have KASLR enabled in safe mode.

This option is relevant to the users that have issues booting to safe mode (e.g. by holding shift or using -x boot
argument). By default safe mode forces 0 slide as if the system was launched with slide=0 boot argument. This
quirk tries to patch boot.efi to lift that limitation and let some other value (from 1 to 255) be used. This quirk
requires ProvideCustomSlide to be enabled.

Note: The necessity of this quirk is determined by safe mode availability. If booting to safe mode fails, this option
can be tried to be enabled.

7. EnableWriteUnprotector
Type: plist boolean
Failsafe: false
Description: Permit write access to UEFI runtime services code.

This option bypasses RX̂ permissions in code pages of UEFI runtime services by removing write protection (WP)
bit from CR0 register during their execution. This quirk requires OC_FIRMWARE_RUNTIME protocol implemented in
OpenRuntime.efi.

Note: This quirk may potentially weaken firmware security, please use RebuildAppleMemoryMap if your
:::
the

firmware supports memory attributes table (MAT). Refer to OCABC: MAT support is 1/0 log entry to determine
whether MAT is supported.

8. ForceExitBootServices
Type: plist boolean
Failsafe: false
Description: Retry ExitBootServices with new memory map on failure.

Try to ensure that ExitBootServices call succeeds even with outdated MemoryMap key argument by obtaining
current memory map and retrying ExitBootServices call.

Note: The necessity of this quirk is determined by early boot crashes of the firmware. Do not use this unless you
fully understand

:::::::
without

:
a
::::
full

:::::::::::::
understanding

::
of

:
the consequences.

9. ProtectMemoryRegions
Type: plist boolean
Failsafe: false
Description: Protect memory regions from incorrect access.

Some firmwares incorrectly map select memory regions:

• CSM region can be marked as boot services code or data, which leaves it as free memory for XNU kernel.
• MMIO regions can be marked as reserved memory and stay unmapped, but may be required to be accessible

at runtime for NVRAM support.

This quirk attempts to fix types of these regions, e.g. ACPI NVS for CSM or MMIO for MMIO.

18

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-uefi#hibernation-state-s4-transition-requirements

Note: The necessity of this quirk is determined by artifacts, sleep wake issues, and boot failures. In general only
very old firmwares need this quirk.

10. ProtectSecureBoot
Type: plist boolean
Failsafe: false
Description: Protect UEFI Secure Boot variables from being written.

Reports security violation during attempts to write to db, dbx, PK, and KEK variables from the operating system.

Note: This quirk mainly attempts to avoid issues with NVRAM implementations with problematic defragmentation,
such as select Insyde or MacPro5,1.

11. ProtectUefiServices
Type: plist boolean
Failsafe: false
Description: Protect UEFI services from being overridden by the firmware.

Some modern firmwares including both hardware and virtual machines, like VMware, may update pointers to
UEFI services during driver loading and related actions. Consequentially this directly breaks other quirks that
affect memory management, like DevirtualiseMmio, ProtectMemoryRegions, or RebuildAppleMemoryMap, and
may also break other quirks depending on the effects of these.

Note: On VMware the need for this quirk may be diagnosed by “Your Mac OS guest might run unreliably with
more than one virtual core.” message.

12. ProvideCustomSlide
Type: plist boolean
Failsafe: false
Description: Provide custom KASLR slide on low memory.

This option performs memory map analysis of your
:::
the

:
firmware and checks whether all slides (from 1 to 255) can

be used. As boot.efi generates this value randomly with rdrand or pseudo randomly rdtsc, there is a chance
of boot failure when it chooses a conflicting slide. In case potential conflicts exist, this option forces macOS to
use a pseudo random value among the available ones. This also ensures that slide= argument is never passed to
the operating system for security reasons.

Note: The necessity of this quirk is determined by OCABC: Only N/256 slide values are usable! message
in the debug log. If the message is present, this option is to be enabled.

13. ProvideMaxSlide
Type: plist integer
Failsafe: 0
Description: Provide maximum KASLR slide when higher ones are unavailable.

This option overrides the maximum slide of 255 by a user specified value between 1 and 254 inclusive when
ProvideCustomSlide is enabled. It is believed that modern firmwares allocate pool memory from top to bottom,
effectively resulting in free memory at the time of slide scanning being later used as temporary memory during
kernel loading. In case those memory are unavailable, this option can stop evaluating higher slides.

Note: The necessity of this quirk is determined by random boot failure when ProvideCustomSlide is enabled
and the randomized slide fall into the unavailable range. When AppleDebug is enabled, usually the debug log may
contain messages like AAPL: [EB|‘LD:LKC] } Err(0x9). To find the optimal value, manually append slide=X
to boot-args and log the largest one that won’t cause boot failure

:::
will

:::
not

::::::
result

::
in

:::::
boot

:::::::
failures.

14. RebuildAppleMemoryMap
Type: plist boolean
Failsafe: false
Description: Generate Memory Map compatible with macOS.

Apple kernel has several limitations in parsing UEFI memory map:

• Memory map size must not exceed 4096 bytes as Apple kernel maps it as a single 4K page. Since some
firmwares have very large memory maps (approximately over 100 entries) Apple kernel will crash at boot.

19

6 DeviceProperties

6.1 Introduction
Device configuration is provided to macOS with a dedicated buffer, called EfiDevicePathPropertyDatabase. This
buffer is a serialised map of DevicePaths to a map of property names and their values.

Property data can be debugged with gfxutil. To obtain current property data use the following command in macOS:

ioreg -lw0 -p IODeviceTree -n efi -r -x | grep device-properties |
sed 's/.*<//;s/>.*//' > /tmp/device-properties.hex &&
gfxutil /tmp/device-properties.hex /tmp/device-properties.plist &&
cat /tmp/device-properties.plist

Device propertties
:::::::::
properties are part of the IODeviceTree (gIODT) plane of macOS I/O Registry. This plane has

several construction stages relevant for the platform initialisation. While the early construction stage is performed by
the XNU kernel in the IODeviceTreeAlloc method, the majority of the construction is performed by the platform
expert, implemented in AppleACPIPlatformExpert.kext.

AppleACPIPlatformExpert incorporates two stages of IODeviceTree construction implemented by calling
AppleACPIPlatformExpert::mergeDeviceProperties:

1. During ACPI table initialisation through the recursive ACPI namespace scanning by the calls to
AppleACPIPlatformExpert::createDTNubs.

2. During IOService registration (IOServices::registerService) callbacks implemented as a part of
AppleACPIPlatformExpert::platformAdjustService function and its private worker method
AppleACPIPlatformExpert::platformAdjustPCIDevice specific to the PCI devices.

The application of the stages depends on the device presence in ACPI tables. The first stage applies very early but
exclusively to the devices present in ACPI tables. The second stage applies to all devices much later after the PCI
configuration and may repeat the first stage if the device was not present in ACPI.

For all kernel drivers, which may inspect the IODeviceTree plane without probing (e.g. Lilu and its plugins like
WhateverGreen) it is particularly important to ensure device presence in the ACPI tables. Failing to do so may result
in all kinds of erratic behaviour caused by ignoring the injected device properties as they were not constructed at
the first stage. See SSDT-IMEI.dsl and SSDT-BRG0.dsl for an example.

6.2 Properties
1. Add

Type: plist dict
Description: Sets device properties from a map (plist dict) of deivce

:::::
device

:
paths to a map (plist dict) of

variable names and their values in plist metadata format. Device paths must be provided in canonic string
format (e.g. PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x0)). Properties will only be set if not present and not
deleted.

Note: Currently properties may only be (formerly) added by the original driver, so unless a separate driver was
installed, there is no reason to delete the variables.

2. Delete
Type: plist dict
Description: Removes device properties from a map (plist dict) of deivce

::::::
device paths to an array (plist

array) of variable names in plist string format.

6.3 Common Properties
Some known properties include:

• device-id
User-specified device identifier used for I/O Kit matching. Has 4 byte data type.

• vendor-id
User-specified vendor identifier used for I/O Kit matching. Has 4 byte data type.

21

https://github.com/acidanthera/gfxutil

7 Kernel

7.1 Introduction
This section allows to apply different kinds of kernelspace modifications on Apple Kernel (XNU). The modifications
currently provide driver (kext) injection, kernel and driver patching, and driver blocking.

7.2 Properties
1. Add

Type: plist array
Failsafe: Empty
Description: Load selected kernel drivers from OC/Kexts directory.

Designed to be filled with plist dict values, describing each driver. See Add Properties section below. Kernel
driver load order follows the item order in the array, thus the dependencies should be written prior to their
consumers.

To track the dependency orderone can ,
:
inspect the OSBundleLibraries key in the Info.plist of the kext. Any

kext mentioned in the OSBundleLibraries of the other kext must be precede this kext.

Note: Kexts may have inner kexts (Plug-Ins) in their bundle. Each inner kext must be added separately.

2. Block
Type: plist array
Failsafe: Empty
Description: Remove selected kernel drivers from prelinked kernel.

Designed to be filled with plist dictionary values, describing each blocked driver. See Block Properties section
below.

3. Emulate
Type: plist dict
Description: Emulate select hardware in kernelspace via parameters described in Emulate Properties section
below.

4. Force
Type: plist array
Failsafe: Empty
Description: Load kernel drivers from system volume if they are not cached.

Designed to be filled with plist dict values, describing each driver. See Force Properties section below. This
section resolves the problem of injecting drivers that depend on other drivers, which are not cached otherwise.
The issue normally affects older operating systems, where various dependency kexts, like IOAudioFamily or
IONetworkingFamily may not be present in the kernel cache by default. Kernel driver load order follows the item
order in the array, thus the dependencies should be written prior to their consumers. Force happens before Add.

Note: The signature of the “forced” kernel drivers is not checked anyhow, making the use of this feature extremely
dangerous and undesired for secure boot. This feature may not work on encrypted partitions in newer operating
systems.

5. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in kernel and drivers prior to driver addition and removal.

Designed to be filled with plist dictionary values, describing each patch. See Patch Properties section below.

6. Quirks
Type: plist dict
Description: Apply individual kernel and driver quirks described in Quirks Properties section below.

23

https://opensource.apple.com/source/xnu

Failsafe: Empty string
Description: Adds kernel driver on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

8. PlistPath
Type: plist string
Failsafe: Empty string
Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

7.4 Block Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Kext block architecture (Any, i386, x86_64).

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel driver will not be blocked unless set to true.

4. Identifier
Type: plist string
Failsafe: Empty string
Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

5. MaxKernel
Type: plist string
Failsafe: Empty string
Description: Blocks kernel driver on specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

6. MinKernel
Type: plist string
Failsafe: Empty string
Description: Blocks kernel driver on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

7.5 Emulate Properties
1. Cpuid1Data

Type: plist data, 16 bytes
Failsafe: All zero
Description: Sequence of EAX, EBX, ECX, EDX values to replace CPUID (1) call in XNU kernel.

This property serves for two
::::::::
primarily

::::::
serves

:::
for

:::::
three

:
needs:

• Enabling support of an unsupported CPU model .
::::
(e.g.

:::::
Intel

:::::::::
Pentium).

:

• Enabling
::::::
support

:::
of

:
a
:::::
CPU

::::::
model

:::::
that

::
is

:::
not

::::
yet

:::::::::
supported

:::
by

::
a

:::::::
specific

::::::
version

:::
of

:::::::
macOS

:::::
which

:::::::
usually

:
is
::::
old.

:

•
::::::::
Enabling XCPM support for an unsupported CPU variant.

::::
Note

::
1:

:::
It

::::
may

::::
also

:::
be

:::
the

::::
case

:::::
that

:::
the

:::::
CPU

::::::
model

::
is

:::::::::
supported

::::
but

:::::
there

::
is

:::
no

::::::
power

:::::::::::
management

::::::::::
supported

::::
(e.g.

:::::::
virtual

::::::::::
machines).

:::
In

::::
this

:::::
case,

::::::::::
MinKernel

:::
and

::::::::::
MaxKernel

:::
can

:::
be

:::
set

::
to

:::::::
restrict

:::::
CPU

:::::::::::::
virtualisation

::::
and

:::::::
dummy

:::::
power

::::::::::::
management

:::::::
patches

:::
to

:::
the

:::::::::
particular

:::::::
macOS

::::::
kernel

::::::::
version.

25

::::
Note

::
2:
:
Normally it is only the value of EAX that needs to be taken care of, since it represents the full CPUID.

The remaining bytes are to be left as zeroes. Byte order is Little Endian, so for example, C3 06 03 00 stands for
CPUID 0x0306C3 (Haswell).

::::
Note

::
3:
:
For XCPM support it is recommended to use the following combinations.

• Haswell-E (0x0306F2) to Haswell (0x0306C3):
Cpuid1Data: C3 06 03 00 00 00 00 00 00 00 00 00 00 00 00 00
Cpuid1Mask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

• Broadwell-E (0x0406F1) to Broadwell (0x0306D4):
Cpuid1Data: D4 06 03 00 00 00 00 00 00 00 00 00 00 00 00 00
Cpuid1Mask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

Keep in mind,
::::
Note

::
4
:
:
:::::
Note

:
that the following configurations are unsupported

::
by

:::::::
XCPM

:
(at least out of the

box):

• Consumer Ivy Bridge (0x0306A9) as Apple disabled XCPM for Ivy Bridge and recommends legacy power
management for these CPUs. You will need to manually patch _xcpm_bootstrap to force

::::::
should

::::::::
manually

::
be

::::::::
patched

::
to

:::::::
enforce

:
XCPM on these CPUs instead of using this option.

• Low-end CPUs (e.g. Haswell+ Pentium) as they are not supported properly by macOS. Legacy hacks for
older models can be found in the Special NOTES section of acidanthera/bugtracker#365.

2. Cpuid1Mask
Type: plist data, 16 bytes
Failsafe: All zero
Description: Bit mask of active bits in Cpuid1Data.

When each Cpuid1Mask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of Cpuid1Data.

3.
:::::::::::::::::::::
DummyPowerManagement
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

:::::::::::::
Requirement

:
:
::::
10.4

::::::::::::
Description:

::::::::
Disables

::::::::::::::::::::::::::::::
AppleIntelCpuPowerManagement

:
.
:

::::
Note

::
1:

:::::
This

::::::
option

::
is

::
a

::::::::
preferred

::::::::::
alternative

::
to

:::::::::::::::::::::::::::::
NullCpuPowerManagement.kext

::
for

::::::
CPUs

:::::::
without

::::::
native

::::::
power

:::::::::::
management

::::::
driver

::
in

::::::::
macOS.

::::
Note

::
2:

::::::
While

::::
this

::::::
option

::
is

::::::
usually

:::::::
needed

::
to

::::::
disable

::::::::::::::::::::::::::::::
AppleIntelCpuPowerManagement

::
on

:::::::::::
unsupported

:::::::::
platforms,

:
it
::::
can

::::
also

:::
be

::::
used

:::
to

::::::
disable

::::
this

:::::
kext

::
in

:::::
other

:::::::::
situations

:::::
(e.g.

:::::
with

:::::::::::
Cpuid1Data

:::
left

:::::::
blank).

:

4.
:::::::::
MaxKernel
:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
:::::::
Empty

:::::
string

::::::::::::
Description:

:::::::::
Emulates

:::::::
CPUID

::::
and

:::::::
applies

::::::::::::::::::::::
DummyPowerManagement

::
on

::::::::
specified

:::::::
macOS

:::::::
version

:::
or

:::::
older.

:

::::
Note

:
:
:::::
Refer

:::
to Add MaxKernel description

:::
for

:::::::::
matching

:::::
logic.

:

5.
:::::::::
MinKernel
:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
:::::::
Empty

:::::
string

::::::::::::
Description:

:::::::::
Emulates

:::::::
CPUID

::::
and

:::::::
applies

::::::::::::::::::::::
DummyPowerManagement

::
on

::::::::
specified

:::::::
macOS

:::::::
version

:::
or

::::::
newer.

:

::::
Note

:
:
:::::
Refer

:::
to Add MaxKernel description

:::
for

:::::::::
matching

:::::
logic.

:

7.6 Force Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Kext architecture (Any, i386, x86_64).

2. BundlePath
Type: plist string

26

https://github.com/acidanthera/bugtracker/issues/365

4. Count
Type: plist integer
Failsafe: 0
Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

5. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel patch will not be used unless set to true.

6. Find
Type: plist data
Failsafe: Empty data
Description: Data to find. Can be set to empty for immediate replacement at Base. Must equal to Replace in
size otherwise.

7. Identifier
Type: plist string
Failsafe: Empty string
Description: Kext bundle identifier (e.g. com.apple.driver.AppleHDA) or kernel for kernel patch.

8. Limit
Type: plist integer
Failsafe: 0
Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole kext or kernel.

9. Mask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

10. MaxKernel
Type: plist string
Failsafe: Empty string
Description: Patches data on specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

11. MinKernel
Type: plist string
Failsafe: Empty string
Description: Patches data on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

12. Replace
Type: plist data
Failsafe: Empty data
Description: Replacement data of one or more bytes.

13. ReplaceMask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

14. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

28

7.8 Quirks Properties
1. AppleCpuPmCfgLock

Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)

::::
10.4

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Certain firmwares lock PKG_CST_CONFIG_CONTROL MSR register. To check its state one can use
::::
The bundled

VerifyMsrE2 tool . Select firmwares
:::
can

:::
be

::::
used

:::
to

:::::
check

:::
its

:::::
state.

::::::
Some

::::::::
firmware

:
have this register locked

::::
only

on some coresonly.

As modern firmwares provide CFG Lock setting, which allows configuring PKG_CST_CONFIG_CONTROL MSR register
lock, this option should be avoided whenever possible. For several APTIO firmwares not displaying CFG Lock
setting in the GUI it is possible to access the option directly:

(a) Download UEFITool and IFR-Extractor.
(b) Open your

:::
the firmware image in UEFITool and find CFG Lock unicode string. If it is not present, your

:::
the

firmware may not have this option and you should stop
::
the

:::::::
process

:::::::
should

::::::::
therefore

:::
be

:::::::::::
discontinued.

(c) Extract the Setup.bin PE32 Image Section (the one UEFITool found) through
::
the

:
Extract Body menu

option.
(d) Run IFR-Extractor on the extracted file (e.g. ./ifrextract Setup.bin Setup.txt).
(e) Find CFG Lock, VarStoreInfo (VarOffset/VarName): in Setup.txt and remember the offset right after

it (e.g. 0x123).
(f) Download and run Modified GRUB Shell compiled by brainsucker or use a newer version by datasone.
(g) Enter setup_var 0x123 0x00 command, where 0x123 should be replaced by your

:::
the

:
actual offset, and

reboot.

Warning: Variable offsets are unique not only to each motherboard but even to its firmware version. Never ever
try to use an offset without checking.

2. AppleXcpmCfgLock
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should be avoided whenever possible. See AppleCpuPmCfgLock description for more details.

3. AppleXcpmExtraMsrs
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables multiple MSR access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-SP, and similar
CPUs. More details on the XCPM patches are outlined in acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

4. AppleXcpmForceBoost
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Forces maximum performance in XCPM mode.

This patch writes 0xFF00 to MSR_IA32_PERF_CONTROL (0x199), effectively setting maximum multiplier for all the
time.

Note: While this may increase the performance, this patch is strongly discouraged on all systems but those
explicitly dedicated to scientific or media calculations. In general only certain Xeon models benefit from the

29

https://github.com/LongSoft/UEFITool/releases
https://github.com/LongSoft/Universal-IFR-Extractor/releases
http://brains.by/posts/bootx64.7z
https://geektimes.com/post/258090
https://github.com/datasone/grub-mod-setup_var
https://github.com/datasone
https://github.com/acidanthera/bugtracker/issues/365

patch.

5. CustomSMBIOSGuid
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)

::::
10.4

Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

6. DisableIoMapper
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables IOMapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to deleting DMAR ACPI table and disabling VT-d in firmware preferences,
which does not break VT-d support in other systems in case they need it.

7. DisableLinkeditJettison
Type: plist boolean
Failsafe: false
Requirement: 11.0
Description: Disables __LINKEDIT jettison code.

This option lets Lilu.kext and possibly some others function in macOS Big Sur with best performance without
keepsyms=1 boot argument.

8. DisableRtcChecksum
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)

::::
10.4

Description: Disables primary checksum (0x58-0x59) writing in AppleRTC.

Note 1 : This option will not protect other areas from being overwritten, see RTCMemoryFixup kernel extension
if this is desired.

Note 2 : This option will not protect areas from being overwritten at firmware stage (e.g. macOS bootloader), see
AppleRtc

::::::::::::
AppleRtcRam protocol description if this is desired.

9. DummyPowerManagement
:::::::::::::::::::::
ExtendBTFeatureFlags

Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)

::::
10.8

Description: Disables
:::
Set

:
AppleIntelCpuPowerManagement

:::::::::::::
FeatureFlags

::
to

:::::
0x0F

::
for

::::
full

::::::::::::
functionality

:::
of

:::::::::
Bluetooth,

:::::::::
including

::::::::::
Continuity.

Note: This option is a preferred alternative to NullCpuPowerManagement.kext for CPUs without native power
management driver in macOS.

:::::::::::
substitution

:::
for

::::::::::::::::::::::::::
BT4LEContinuityFixup.kext,

::::::
which

:::::
does

::::
not

::::::::
function

::::::::
properly

:::
due

:::
to

:::
late

:::::::::
patching

::::::::
progress.

:

10. ExternalDiskIcons
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)

::::
10.4

Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should be avoided whenever possible. Modern firmwares usually have compatible AHCI
controllers.

11. IncreasePciBarSize
Type: plist boolean
Failsafe: false
Requirement: 10.10
Description: Increases 32-bit PCI bar size in IOPCIFamily from 1 to 4 GBs.

30

https://github.com/acidanthera/RTCMemoryFixup

Note: This option should be avoided whenever possible. In general the necessity of this option means misconfigured
or broken firmware.

12. LapicKernelPanic
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)
Description: Disables kernel panic on LAPIC interrupts.

13.
:::::::::::::::
LegacyCommpage
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

:::::::::::::
Requirement

:
:
::::
10.4

:
-
:::::
10.6

::::::::::::
Description:

:::::::::
Replaces

::::
the

:::::::
default

::::::
64-bit

::::::::::
commpage

::::::
bcopy

:::::::::::::::
implementation

::::
with

::::
one

:::::
that

:::::
does

::::
not

:::::::
require

::::::
SSSE3,

::::::
useful

:::
for

:::::::
legacy

:::::::::
platforms.

:::::
This

::::::::
prevents

::
a
:::::::::
commpage

::::
no

::::::
match

::::
for

:::::
last

:::::
panic

::::
due

::
to

:::
no

:::::::::
available

:::::
64-bit

::::::
bcopy

:::::::::
functions

::::
that

:::
do

:::
not

:::::::
require

:::::::
SSSE3.

:

14. PanicNoKextDump
Type: plist boolean
Failsafe: false
Requirement: 10.13 (not required for older)
Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

15. PowerTimeoutKernelPanic
Type: plist boolean
Failsafe: false
Requirement: 10.15 (not required for older)
Description: Disables kernel panic on setPowerState timeout.

An additional security measure was added to macOS Catalina (10.15) causing kernel panic on power change
timeout for Apple drivers. Sometimes it may cause issues on misconfigured hardware, notably digital audio, which
sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

16. ThirdPartyDrives
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit, not required for older)
Description: Apply vendor patches to IOAHCIBlockStorage.kext to enable native features for third-party drives,
such as TRIM on SSDs or hibernation support on 10.15 and newer.

Note: This option may be avoided on user preference. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce. Starting from 10.15 this
utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID namespace with 01 00 00 00 value.

17. XhciPortLimit
Type: plist boolean
Failsafe: false
Requirement: 10.11 (not required for older)
Description: Patch various kexts (AppleUSBXHCI.kext, AppleUSBXHCIPCI.kext, IOUSBHostFamily.kext) to
remove USB port count limit of 15 ports.

Note: This option should be avoided whenever possible. USB port limit is imposed by the amount of used bits in
locationID format and there is no possible way to workaround this without heavy OS modification. The only valid
solution is to limit the amount of used ports to 15 (discarding some). More details can be found on AppleLife.ru.

7.9 Scheme Properties
These properties are particularly relevant for older macOS operating systems. For more details on how to install and
troubleshoot such macOS installation refer to Legacy Apple OS.

31

https://applelife.ru/posts/550233

1. FuzzyMatch
Type: plist boolean
Failsafe: false
Description: Use kernelcache with different checksums when available.

On macOS 10.6 and earlier kernelcache filename has a checksum, which essentially is adler32 from SMBIOS
product name and EfiBoot device path. On certain firmwares EfiBoot device path differs between UEFI and
macOS due to ACPI or hardware specifics, rendering kernelcache checksum as always different.

This setting allows matching the latest kernelcache with a suitable architecture when the kernelcache without
suffix is unavailable, improving macOS 10.6 boot performance on several platforms.

2. KernelArch
Type: plist string
Failsafe: Auto
Description: Prefer specified kernel architecture (Auto, i386, i386-user32, x86_64) when available.

On macOS 10.7 and earlier XNU kernel can boot with architectures different from the usual x86_64. This setting
will use the specified architecture to boot macOS when it is supported by the macOS and the configuration:

• Auto — Choose the preferred architecture automatically.
• i386 — Use i386 (32-bit) kernel when available.
• i386-user32 — Use i386 (32-bit) kernel when available and force the use of 32-bit userspace on 64-bit

capable processors
:
if

:::::::::
supported

:::
by

:::
the

:::::::::
operating

:::::::
system. On macOS 64-bit capable processors are assumed

to support SSSE3. This is not the case for older 64-bit capable Pentium processors, which cause some
applications to crash on macOS 10.6. The

::::
This

:
behaviour corresponds to -legacy kernel boot argument.

::::
This

::::::
option

::
is

:::::::::::
unavailable

:::
for

::::
10.4

::::
and

::::
10.5

:::::
when

:::::::
running

:::
on

::::::
64-bit

::::::::
firmware

::::
due

::
to

:::
an

::::::::::::
uninitialised

:::::
64-bit

:::::::
segment

:::
in

:::
the

:::::
XNU

:::::::
kernel,

::::::
which

::::::
causes

:::::::::::::::::
AppleEFIRuntime

:::
to

::::::::::
incorrectly

:::::::
execute

::::::
64-bit

:::::
code

::
as

::::::
16-bit

:::::
code.

• x86_64 — Use x86_64 (64-bit) kernel when available.

Below is the algorithm determining the kernel architecture.

(a) arch argument in image arguments (e.g. when launched via UEFI Shell) or in boot-args variable overrides
any compatibility checks and forces the specified architecture, completing this algorithm.

(b) OpenCore build architecture restricts capabilities to i386 and i386-user32 mode for the 32-bit firmware
variant.

(c) Determined EfiBoot version restricts architecture choice:
• 10.4-10.5 — i386 or i386-user32

::::
(only

:::
on

::::::
32-bit

:::::::::
firmware)

• 10.6 -10.7 — i386, i386-user32, or x86_64
•

::::
10.7

::
—

:::::
i386

::
or

:::::::
x86_64

• 10.8 or newer — x86_64
(d) If KernelArch is set to Auto and SSSE3 is not supported by the CPU, capabilities are restricted to

i386-user32 if supported by EfiBoot.
(e) Board identifier (from SMBIOS) based on EfiBoot version disables x86_64 support on an unsupported model

if any i386 variant is supported. Auto is not consulted here as the list is not overridable in EfiBoot.
(f) KernelArch restricts the support to the explicitly specified architecture (when not set to Auto) if the

architecture remains present in the capabilities.
(g) The best supported architecture is chosen in this order: x86_64, i386, i386-user32.

Unlike macOS 10.7, where select boards identifiers are treated as the i386 only machines, and macOS 10.5 or
earlier, where x86_64 is not supported by the macOS kernel, macOS 10.6 is very special. The architecture choice
on macOS 10.6 depends on many factors including not only the board identifier, but also macOS product type
(client vs server), macOS point release, and RAM amount. The detection of them all is complicated and not
practical, because several point releases had genuine bugs and failed to properly perform the server detection
in the first place. For this reason OpenCore on macOS 10.6 will fallback to x86_64 architecture whenever it is
supported by the board at all, just like on macOS 10.7. As a reference here is the 64-bit Mac model compatibility
corresponding to actual EfiBoot behaviour on macOS 10.6.8 and 10.7.5.

32

Model 10.6 (minimal) 10.6 (client) 10.6 (server) 10.7 (any)
Macmini 4,x (Mid 2010) 5,x (Mid 2011) 4,x (Mid 2010) 3,x (Early 2009)
MacBook Unsupported Unsupported Unsupported 5,x (2009/09)
MacBookAir Unsupported Unsupported Unsupported 2,x (Late 2008)
MacBookPro 4,x (Early 2008) 8,x (Early 2011) 8,x (Early 2011) 3,x (Mid 2007)
iMac 8,x (Early 2008) 12,x (Mid 2011) 12,x (Mid 2011) 7,x (Mid 2007)
MacPro 3,x (Early 2008) 5,x (Mid 2010) 3,x (Early 2008) 3,x (Early 2008)
Xserve 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008)

Note: 3+2 and 6+4 hotkeys to choose the preferred architecture are unsupported due to being handled by EfiBoot
and thus being hard to properly detect.

3. KernelCache
Type: plist string
Failsafe: Auto
Description: Prefer specified kernel cache type (Auto, Cacheless, Mkext, Prelinked) when available.

Different variants of macOS support different kernel caching variants designed to improve boot performance. This
setting allows to prevent using

::::::::
prevents

:::
the

::::
use

::
of

:
faster kernel caching variants if slower variants are available

for debugging and stability reasons. I.e.
:
, by specifying Mkextone will disable ,

:
Prelinked

:::
will

:::
be

:::::::
disabled

:
for e.g.

10.6 but not
:::
for 10.7.

The list of available kernel caching types and its current support in OpenCore is listed below.

macOS i386 NC i386 MK i386 PK x86_64 NC x86_64 MK x86_64 PK x86_64 KC
10.4 NO

::::
YES

:
NO

::::
YES

:
(V1) NO

::::
(V1)

:
— — — —

10.5 NO
::::
YES

:
NO

::::
YES

:
(V1) NO

::::
(V1)

:
— — — —

10.6 NO
::::
YES

:
NO

::::
YES

:
(V2) NO

::::
YES

:::::
(V2) YES YES (V2) YES

::::
(V2)

:
—

10.7 NO
::::
YES

:
— NO

::::
YES

:::::
(V3) YES — YES

::::
(V3)

:
—

10.8-10.9 — — — YES — YES
::::
(V3)

:
—

10.10-10.15 — — — — — YES
::::
(V3)

:
—

11.0+ — — — — — YES
::::
(V3)

:
YES

::::
Note

:
:
:::::
First

:::::::
version

::::
(V1)

:::
of

::::::
32-bit

::::::::::::::::
prelinkedkernel

:
is

::::::::::::
unsupported

:::
due

:::
to

::::
kext

:::::::
symbol

::::::
tables

:::::
being

::::::::::
corrupted

::
by

:::
the

::::::
tools.

:::
On

:::::
these

::::::::
versions

:::::
Auto

:::
will

::::::
block

::::::::::::::::
prelinkedkernel

::::::::
booting.

::::
This

::::
also

::::::
makes

:::::::::::
keepsyms=1

::
for

:::::
kext

::::::
frames

::::::
broken

:::
on

:::::
these

::::::::
systems.

:

33

• Mark the option as the default option to boot.
• Boot option through the picker or without it depending on the ShowPicker option.
• Show picker on failure otherwise.

Note 1 : This process is meant to work reliably only when RequestBootVarRouting option is enabled or the firmware
does not control UEFI boot options (OpenDuetPkg or custom BDS). Without BootProtect it also is possible that other
operating systems overwrite OpenCore, make sure to enable it if you plan

:::::
when

::::::::
planning

:
to use them.

Note 2 : UEFI variable boot options’ boot arguments will be removed if present as they may contain arguments
compromising the operating system, which is undesired once secure boot is enabled.

Note 3 : Some operating systems, namely Windows, will create their boot option and mark it as top most upon first
boot or after NVRAM Reset. When this happens default boot entry choice will update till next manual reconfiguration.

8.2 Properties
1. Boot

Type: plist dict
Description: Apply boot configuration described in Boot Properties section below.

2. BlessOverride
Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders, for
example, \EFI\debian\grubx64.efi for Debian bootloader. This allows unusual boot paths to be automaticlly
::::::::::::
automatically

:
discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such

as \System\Library\CoreServices\boot.efi or \EFI\Microsoft\Boot\bootmgfw.efi, but unlike predefined
bless paths they have highest priority.

3. Debug
Type: plist dict
Description: Apply debug configuration described in Debug Properties section below.

4. Entries
Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

5. Security
Type: plist dict
Description: Apply security configuration described in Security Properties section below.

6. Tools
Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

Note: Select tools, for example, UEFI Shell, are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain. For tool examples check the UEFI section of this document.

8.3 Boot Properties
1. ConsoleAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for console.

Text renderer supports colour arguments as a sum of foreground and background colours according to UEFI
specification. The value of black background and black foreground (0) is reserved. List of colour names:

• 0x00 — EFI_BLACK

35

• 0x01 — EFI_BLUE
• 0x02 — EFI_GREEN
• 0x03 — EFI_CYAN
• 0x04 — EFI_RED
• 0x05 — EFI_MAGENTA
• 0x06 — EFI_BROWN
• 0x07 — EFI_LIGHTGRAY
• 0x08 — EFI_DARKGRAY
• 0x09 — EFI_LIGHTBLUE
• 0x0A — EFI_LIGHTGREEN
• 0x0B — EFI_LIGHTCYAN
• 0x0C — EFI_LIGHTRED
• 0x0D — EFI_LIGHTMAGENTA
• 0x0E — EFI_YELLOW
• 0x0F — EFI_WHITE
• 0x00 — EFI_BACKGROUND_BLACK
• 0x10 — EFI_BACKGROUND_BLUE
• 0x20 — EFI_BACKGROUND_GREEN
• 0x30 — EFI_BACKGROUND_CYAN
• 0x40 — EFI_BACKGROUND_RED
• 0x50 — EFI_BACKGROUND_MAGENTA
• 0x60 — EFI_BACKGROUND_BROWN
• 0x70 — EFI_BACKGROUND_LIGHTGRAY

Note: This option may not work well with System text renderer. Setting a background different from black could
help testing proper GOP functioning.

2. HibernateMode
Type: plist string
Failsafe: None
Description: Hibernation detection mode. The following modes are supported:

• None — Avoid hibernation for your own good
::::::::::::::
(Recommended).

• Auto — Use RTC and NVRAM detection.
• RTC — Use RTC detection.
• NVRAM — Use NVRAM detection.

3. HideAuxiliary
Type: plist boolean
Failsafe: false
Description: Hides auxiliary entries from picker menu by default.

An entry is considered auxiliary when at least one of the following applies:

• Entry is macOS recovery.
• Entry is macOS Time Machine.
• Entry is explicitly marked as Auxiliary.
• Entry is system (e.g. Reset NVRAM).

To see all entries picker menu needs to be reloaded in extended mode by pressing Spacebar key. Hiding auxiliary
entries may increase boot performance for multidisk systems.

4. PickerAttributes
Type: plist integer
Failsafe: 0
Description: Sets specific attributes for picker.

Different pickers may be configured through the attribute mask containing OpenCore-reserved (BIT0~BIT15) and
OEM-specific (BIT16~BIT31) values.

Current OpenCore values include:

• 0x0001 — OC_ATTR_USE_VOLUME_ICON, provides custom icons for boot entries:

36

For Tools OpenCore will try to load a custom icon and fallback to the default icon:
– ResetNVRAM — Resources\Image\ResetNVRAM.icns — ResetNVRAM.icns from icons directory.
– Tools\<TOOL_RELATIVE_PATH>.icns — icon near the tool file with appended .icns extension.

For custom boot Entries OpenCore will try to load a custom icon and fallback to the volume icon or the
default icon:
– <ENTRY_PATH>.icns — icon near the entry file with appended .icns extension.

For all other entries OpenCore will try to load a volume icon and fallback to the default icon:
– .VolumeIcon.icns file at Preboot root for APFS.
– .VolumeIcon.icns file at volume root for other filesystems.

Volume icons can be set in Finder. Note, that enabling this may result in external and internal icons to be
indistinguishable.

• 0x0002 — OC_ATTR_USE_DISK_LABEL_FILE, provides custom rendered titles for boot entries:
– .disk_label (.disk_label_2x) file near bootloader for all filesystems.
– <TOOL_NAME>.lbl (<TOOL_NAME>.l2x) file near tool for Tools.

Prerendered labels can be generated via disklabel utility or bless command. When disabled or missing
text labels (.contentDetails or .disk_label.contentDetails) are to be rendered instead.

• 0x0004 — OC_ATTR_USE_GENERIC_LABEL_IMAGE, provides predefined label images for boot entries without
custom entries. May give less detail for the actual boot entry.

• 0x0008 — OC_ATTR_USE_ALTERNATE_ICONS, changes used icon set to an alternate one if it is supported. For
example, this could make a use of old-style icons with a custom background colour.

5. PickerAudioAssist
Type: plist boolean
Failsafe: false
Description: Enable screen reader by default in boot picker.

For macOS bootloader screen reader preference is set in preferences.efires archive in isVOEnabled.int32
file and is controlled by the operating system. For OpenCore screen reader support this option is an independent
equivalent. Toggling screen reader support in both OpenCore boot picker and macOS bootloader FileVault 2
login window can also be done with Command + F5 key combination.

Note: screen reader requires working audio support, see UEFI Audio Properties section for more details.

6. PollAppleHotKeys
Type: plist boolean
Failsafe: false
Description: Enable modifier hotkey handling in boot picker.

In addition to action hotkeys, which are partially described in PickerMode section and are normally handled
by Apple BDS, there exist modifier keys, which are handled by operating system bootloader, namely boot.efi.
These keys allow to change operating system behaviour by providing different boot modes.

On some firmwares it may be problematic to use modifier keys due to driver incompatibilities. To workaround
this problem this option allows registering select hotkeys in a more permissive manner from within boot picker.
Such extensions include the support of tapping on keys in addition to holding and pressing Shift along with
other keys instead of just Shift alone, which is not detectible

:::::::::
detectable on many PS/2 keyboards. This list of

known modifier hotkeys includes:

• CMD+C+MINUS — disable board compatibility checking.
• CMD+K — boot release kernel, similar to kcsuffix=release.
• CMD+S — single user mode.
• CMD+S+MINUS — disable KASLR slide, requires disabled SIP.
• CMD+V — verbose mode.
• Shift — safe mode.

7. ShowPicker
Type: plist boolean
Failsafe: false
Description: Show simple boot picker to allow boot entry selection.

37

Failsafe: false
Description: Enable boot.efi debug log saving to OpenCore log.

Note: This option only applies to 10.15.4 and newer.

2. ApplePanic
Type: plist boolean
Failsafe: false
Description: Save macOS kernel panic to OpenCore root partition.

The file is saved as panic-YYYY-MM-DD-HHMMSS.txt. It is strongly recommended to have keepsyms=1 boot
argument to see debug symbols in the panic log. In case it was not present kpdescribe.sh utility (bundled with
OpenCore) may be used to partially recover the stacktrace.

Development and debug kernels produce more helpful kernel panics. Consider downloading and installing
KernelDebugKit from developer.apple.com when debugging a problem. To activate a development kernel you
will need to add a kcsuffix=development boot argument

::
the

:::::
boot

:::::::::
argument

::::::::::::::::::::::
kcsuffix=development

::::::
should

::
be

::::::
added. Use uname -a command to ensure that your

:::
the current loaded kernel is a development (or a debug)

kernel.

In case OpenCore kernel panic saving mechanism was not used, kernel panics may still be found in
/Library/Logs/DiagnosticReports directory. Starting with macOS Catalina kernel panics are stored in JSON
format, so they need to be preprocessed before passing to kpdescribe.sh:

cat Kernel.panic | grep macOSProcessedStackshotData |
python -c 'import json,sys;print(json.load(sys.stdin)["macOSPanicString"])'

3. DisableWatchDog
Type: plist boolean
Failsafe: false
Description: Select firmwares may not succeed in quickly booting the operating system, especially in debug
mode, which results in watch dog timer aborting the process. This option turns off watch dog timer.

4. DisplayDelay
Type: plist integer
Failsafe: 0
Description: Delay in microseconds performed after every printed line visible onscreen (i.e. console).

5. DisplayLevel
Type: plist integer, 64 bit
Failsafe: 0
Description: EDK II debug level bitmask (sum) showed onscreen. Unless Target enables console (onscreen)
printing, onscreen debug output will not be visible. The following levels are supported (discover more in
DebugLib.h):

• 0x00000002 (bit 1) — DEBUG_WARN in DEBUG, NOOPT, RELEASE.
• 0x00000040 (bit 6) — DEBUG_INFO in DEBUG, NOOPT.
• 0x00400000 (bit 22) — DEBUG_VERBOSE in custom builds.
• 0x80000000 (bit 31) — DEBUG_ERROR in DEBUG, NOOPT, RELEASE.

6. SerialInit
Type: plist boolean
Failsafe: false
Description: Perform serial port initialisation.

This option will perform serial port initialisation within OpenCore prior to enabling (any) debug logging. Serial
port configuration is defined via PCDs at compile time in gEfiMdeModulePkgTokenSpaceGuid GUID. Default
values as found in MdeModulePkg.dec are as follows:

• PcdSerialBaudRate — Baud rate: 115200.
• PcdSerialLineControl — Line control: no parity, 8 data bits, 1 stop bit.

See more details in Debugging section.

39

https://developer.apple.com
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/Library/DebugLib.h

7. SysReport
Type: plist boolean
Failsafe: false
Description: Produce system report on ESP folder.

This option will create a SysReport directory on ESP partition unless it is already present. The directory will
contain ACPI and SMBIOS dumps.

Note: For security reasons SysReport option is not available in RELEASE builds. Use a DEBUG build if you need
this option

:::
this

:::::::
option

::
is

::::::
needed.

8. Target
Type: plist integer
Failsafe: 0
Description: A bitmask (sum) of enabled logging targets. By default all the logging output is hidden, so this
option is required to be set when debugging is necessary.

The following logging targets are supported:

• 0x01 (bit 0) — Enable logging, otherwise all log is discarded.
• 0x02 (bit 1) — Enable basic console (onscreen) logging.
• 0x04 (bit 2) — Enable logging to Data Hub.
• 0x08 (bit 3) — Enable serial port logging.
• 0x10 (bit 4) — Enable UEFI variable logging.
• 0x20 (bit 5) — Enable non-volatile UEFI variable logging.
• 0x40 (bit 6) — Enable logging to file.

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -lw0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFI variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some firmwares may truncate it much earlier or drop completely if they have no memory.
Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFI variable log
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-log |
awk '{gsub(/%0d%0a%00/,"");gsub(/%0d%0a/,"\n")}1'

Warning: Some firmwares are reported to have broken NVRAM garbage collection. This means that they may
not be able to always free space after variable deletion. Do not use non-volatile NVRAM logging without extra
need on such devices.

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS.txt at EFI volume root with log contents
(the upper case letter sequence is replaced with date and time from the firmware). Please be warned that some
file system drivers present in firmwares are not reliable, and may corrupt data when writing files through UEFI.
Log is attempted to be written in the safest manner, and thus is very slow. Ensure that DisableWatchDog is
set to true when you use a slow drive

:
is
:::::
used. Try to avoid frequent use of this option when dealing with flash

drives as large I/O amounts may speedup memory wear and render this flash drive unusable in shorter time.

When interpreting the log, note that the lines are prefixed with a tag describing the relevant location (module)
of the log line allowing one to better attribute

:::::
better

::::::::::
attribution

:::
of the line to the functionality. The list of

currently used tags is provided below.

Drivers and tools:

• BMF — OpenCanopy, bitmap font
• BS — Bootstrap

40

• GSTT — GoptStop
• HDA — AudioDxe
• KKT — KeyTester
• MMDD — MmapDump
• OCPAVP — PavpProvision
• OCRST — ResetSystem
• OCUI — OpenCanopy
• OC — OpenCore main
• VMOPT — VerifyMemOpt

Libraries:

• AAPL — OcDebugLogLib, Apple EfiBoot logging
• OCABC — OcAfterBootCompatLib
• OCAE — OcAppleEventLib
• OCAK — OcAppleKernelLib
• OCAU — OcAudioLib
• OCAV — OcAppleImageVerificationLib
• OCA —- OcAcpiLib
• OCBP — OcAppleBootPolicyLib
• OCB — OcBootManagementLib
• OCCL — OcAppleChunkListLib
• OCCPU — OcCpuLib
• OCC — OcConsoleLib
•

::::
OCDC

::
—

:::::::::::::::::::::
OcDriverConnectionLib

:

• OCDH — OcDataHubLib
• OCDI — OcAppleDiskImageLib
• OCFSQ — OcFileLib, UnblockFs quirk
• OCFS — OcFileLib
• OCFV — OcFirmwareVolumeLib
• OCHS — OcHashServicesLib
• OCI4 — OcAppleImg4Lib
• OCIC — OcImageConversionLib
• OCII — OcInputLib
• OCJS — OcApfsLib
• OCKM — OcAppleKeyMapLib
• OCL — OcDebugLogLib
• OCMCO — OcMachoLib
• OCME — OcHeciLib
• OCMM — OcMemoryLib
• OCPI — OcFileLib, partition info
• OCPNG — OcPngLib
• OCRAM — OcAppleRamDiskLib
• OCRTC — OcRtcLib
• OCSB — OcAppleSecureBootLib
• OCSMB — OcSmbiosLib
• OCSMC — OcSmcLib
• OCST — OcStorageLib
• OCS — OcSerializedLib
• OCTPL — OcTemplateLib
• OCUC — OcUnicodeCollationLib
• OCUT — OcAppleUserInterfaceThemeLib
• OCXML — OcXmlLib

8.5 Security Properties
1. AllowNvramReset

Type: plist boolean
Failsafe: false

41

Description: Allow CMD+OPT+P+R handling and enable showing NVRAM Reset entry in boot picker.

Note 1 : It is known that some Lenovo laptops have a firmware bug, which makes them unbootable after performing
NVRAM reset. See acidanthera/bugtracker#995 for more details.

Note 2 : Resetting NVRAM will also erase all the boot options otherwise not backed up with bless (e.g. Linux).

2. AllowSetDefault
Type: plist boolean
Failsafe: false
Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in boot picker.

3. ApECID
Type: plist integer, 64 bit
Failsafe: 0
Description: Apple Enclave Identifier.

Setting this value to any non-zero 64-bit integer will allow using personalised Apple Secure Boot identifiers. If
you want to

::
To

:
use this setting, make sure to generate a random 64-bit number with a cryptographically secure

random number generator. With this value set and SecureBootModel valid and not Disabled it is possible to
achieve Full Security of Apple Secure Boot.

To start using personalised Apple Secure Bootyou will have to reinstall ,
:
the operating system or personalise

it. Until your
:::
will

:::::
have

::
to

:::
be

::::::::::
reinstalled

::
or

::::::::::::
personalised.

:::::::
Unless

::::
the

:
operating system is personalisedyou will

only be able to load ,
:
macOS DMG recovery . If you do not have DMG recovery you could always download

it
::::::
cannot

:::
be

:::::::
loaded.

::
If
::::::
DMG

::::::::
recovery

::
is
::::::::
missing,

::
it
::::
can

:::
be

:::::::::::
downloaded

:
with macrecovery utility and put to

com.apple.recovery.boot as explained in Tips and Tricks section. Keep in mind
::::
Note that DMG loading needs

to be set to Signed to use any DMG with Apple Secure Boot.

To personalise an existing operating system use bless command after loading to macOS DMG recovery. Mount
the system volume partition, unless it has already been mounted, and execute the following command:

bless bless --folder "/Volumes/Macintosh HD/System/Library/CoreServices" \
--bootefi --personalize

When reinstalling the operating system, keep in mind
::::
note

:
that current versions of macOS Installer, tested as

of 10.15.6, will usually run out of free memory on the /var/tmp partition when trying to install macOS with
the personalised Apple Secure Boot. Soon after downloading the macOS installer image an Unable to verify
macOS error message will appear. To workaround this issue allocate a dedicated RAM disk of 2 MBs for macOS
personalisation by entering the following commands in macOS recovery terminal before starting the installation:

disk=$(hdiutil attach -nomount ram://4096)
diskutil erasevolume HFS+ SecureBoot $disk
diskutil unmount $disk
mkdir /var/tmp/OSPersonalizationTemp
diskutil mount -mountpoint /var/tmp/OSPersonalizationTemp $disk

4. AuthRestart
Type: plist boolean
Failsafe: false
Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. To perform
authenticated restart one can use a

:
A

:
dedicated terminal command

:::
can

:::
be

::::
used

::
to

::::::::
perform

::::::::::::
authenticated

:::::::
restarts:

sudo fdesetup authrestart. It is also used when installing operating system updates.

VirtualSMC performs authenticated restart by saving disk encryption key split in NVRAM and RTC, which
despite being removed as soon as OpenCore starts, may be considered a security risk and thus is optional.

5. BootProtect
Type: plist string
Failsafe: None
Description: Attempt to provide bootloader persistence.

42

https://github.com/acidanthera/bugtracker/issues/995
https://support.apple.com/en-us/HT208330

Valid values:

• None — do nothing.
• Bootstrap — create or update top-priority \EFI\OC\Bootstrap\Bootstrap.efi boot option (Boot9696)

in UEFI variable storage at bootloader startup. For this option to work RequestBootVarRouting is required
to be enabled.

This option provides integration with third-party operating system installation and upgrade at the times they
overwrite \EFI\BOOT\BOOTx64.efi file. By creating a custom option in Bootstrap mode this file path becomes
no longer used for bootstraping

::::::::::::
bootstrapping

:
OpenCore.

Note 1 : Some firmewares
:::::::::
firmwares

:
may have broken NVRAM, no boot option support, or various other

incompatibilities of any kind. While unlikely, the use of this option may even cause boot failure. Use at your own
risk on

::::
This

::::::
option

::::::
should

:::
be

::::
used

::::::::
without

::::
any

::::::::
warranty

::::::::::
exclusively

:::
on

:::
the

:
boards known to be compatible.

Note 2 : Be warned that while NVRAM reset executed from OpenCore should not erase the boot option created
in Bootstrap, executing NVRAM reset prior to loading OpenCore will remove it.

6. DmgLoading
Type: plist string
Failsafe: Signed
Description: Define Disk Image (DMG) loading policy used for macOS Recovery.

Valid values:

• Disabled — loading DMG images will fail. Disabled policy will still let macOS Recovery to load in most
cases as there usually are boot.efi files compatible with Apple Secure Boot. Manually downloaded DMG
images stored in com.apple.recovery.boot directories will not load, however.

• Signed — only Apple-signed DMG images will load. Due to Apple Secure Boot design Signed policy will
let any Apple-signed macOS Recovery to load regardless of Apple Secure Boot state, which may not always
be desired.

• Any — any DMG images will mount as normal filesystems. Any policy is strongly not recommended and will
cause a boot failure when Apple Secure Boot is activated.

7. EnablePassword
Type: plist boolean
Failsafe: false
Description: Enable password protection to allow sensitive operations.

Password protection ensures that sensitive operations like booting a non-default operating system (e.g. macOS
recovery or a tool), resetting NVRAM storage, trying to boot into a non-default mode (e.g. verbose mode or safe
mode) are not allowed without explicit user authentication by a custom password. Currently password and salt
are hashed with 5000000 iterations of SHA-512.

Note: This functionality is currently in development and is not ready for daily usage.

8. ExposeSensitiveData
Type: plist integer
Failsafe: 0x6
Description: Sensitive data exposure bitmask (sum) to operating system.

• 0x01 — Expose printable booter path as an UEFI variable.
• 0x02 — Expose OpenCore version as an UEFI variable.
• 0x04 — Expose OpenCore version in boot picker menu title.
• 0x08 — Expose OEM information as a set of UEFI variables.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([^,]*\),.*/\1/'); \
if ["$u" != ""]; then sudo diskutil mount $u ; fi

43

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:opencore-version

To obtain OEM information use the following commands in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-product # SMBIOS Type1 ProductName
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-vendor # SMBIOS Type2 Manufacturer
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-board # SMBIOS Type2 ProductName

9. HaltLevel
Type: plist integer, 64 bit
Failsafe: 0x80000000 (DEBUG_ERROR)
Description: EDK II debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

10. PasswordHash
Type: plist data 64 bytes
Failsafe: all zero
Description: Password hash used when EnabledPassword is set.

11. PasswordSalt
Type: plist data
Failsafe: empty
Description: Password salt used when EnabledPassword is set.

12. Vault
Type: plist string
Failsafe: Secure
Description: Enables vaulting mechanism in OpenCore.

Valid values:

• Optional — require nothing, no vault is enforced, insecure.
• Basic — require vault.plist file present in OC directory. This provides basic filesystem integrity verification

and may protect from unintentional filesystem corruption.
• Secure — require vault.sig signature file for vault.plist in OC directory. This includes Basic integrity

checking but also attempts to build a trusted bootchain.

vault.plist file should contain SHA-256 hashes for all files used by OpenCore. Presence of this file is highly
recommended to ensure that unintentional file modifications (including filesystem corruption) do not happen
unnoticed. To create this file automatically use create_vault.sh script. Regardless of the underlying filesystem,
path name and case must match between config.plist and vault.plist.

vault.sig file should contain a raw 256 byte RSA-2048 signature from SHA-256 hash of vault.plist. The
signature is verified against the public key embedded into OpenCore.efi. To embed the public key you should
do either of the following

:::::
should

:::
be

::::::::::
performed:

• Provide public key during the OpenCore.efi compilation in OpenCoreVault.c file.
• Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN OC VAULT= and ==END

OC VAULT== ASCII markers.

RSA public key 520 byte format description can be found in Chromium OS documentation. To convert public
key from X.509 certificate or from PEM file use RsaTool.

The complete set of commands to:

• Create vault.plist.
• Create a new RSA key (always do this to avoid loading old configuration).
• Embed RSA key into OpenCore.efi.
• Create vault.sig.

Can look as follows:

44

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault
https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c
https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault

cd /Volumes/EFI/EFI/OC
/path/to/create_vault.sh .
/path/to/RsaTool -sign vault.plist vault.sig vault.pub
off=$(($(strings -a -t d OpenCore.efi | grep "=BEGIN OC VAULT=" | cut -f1 -d' ')+16))
dd of=OpenCore.efi if=vault.pub bs=1 seek=$off count=528 conv=notrunc
rm vault.pub

Note 1 : While it may appear obvious, but you have to use an external method
:
is

::::::::
required to verify OpenCore.efi

and BOOTx64.efi for secure boot path. For thisyou are recommended to at least ,
::
it
::
is
:::::::::::::
recommended

::
to

:
enable

UEFI SecureBoot with
::::
using

:
a custom certificate , and

:::
and

:::
to

:
sign OpenCore.efi and BOOTx64.efi with your

:
a
:
custom key. More details on customising secure boot on modern firmwares can be found in Taming UEFI

SecureBoot paper (in Russian).

Note 2 : vault.plist and vault.sig are used regardless of this option when vault.plist is present or public
key is embedded into OpenCore.efi. Setting this option will only ensure configuration sanity, and abort the boot
process otherwise.

13. ScanPolicy
Type: plist integer, 32 bit
Failsafe: 0x10F0103
Description: Define operating system detection policy.

This value allows to prevent scanning (and booting) from untrusted source based on a bitmask (sum) of select
flags. As it is not possible to reliably detect every file system or device type, this feature cannot be fully relied
upon in open environments, and the additional measures are to be applied.

Third party drivers may introduce additional security (and performance) measures following the provided scan
policy. Scan policy is exposed in scan-policy variable of 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 GUID for
UEFI Boot Services only.

• 0x00000001 (bit 0) — OC_SCAN_FILE_SYSTEM_LOCK, restricts scanning to only known file systems defined as
a part of this policy. File system drivers may not be aware of this policy, and to avoid mounting of undesired
file systems it is best not to load its driver. This bit does not affect dmg mounting, which may have any file
system. Known file systems are prefixed with OC_SCAN_ALLOW_FS_.

• 0x00000002 (bit 1) — OC_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. This is not always possible to detect protocol tunneling, so be aware that on some
systems it may be possible for e.g. USB HDDs to be recognised as SATA. Cases like this must be reported.
Known device types are prefixed with OC_SCAN_ALLOW_DEVICE_.

• 0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.
• 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HFS file system.
• 0x00000400 (bit 10) — OC_SCAN_ALLOW_FS_ESP, allows scanning of EFI System Partition file system.
• 0x00000800 (bit 11) — OC_SCAN_ALLOW_FS_NTFS, allows scanning of NTFS (Msft Basic Data) file system.
• 0x00001000 (bit 12) — OC_SCAN_ALLOW_FS_EXT, allows scanning of EXT (Linux Root) file system.
• 0x00010000 (bit 16) — OC_SCAN_ALLOW_DEVICE_SATA, allow scanning SATA devices.
• 0x00020000 (bit 17) — OC_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.
• 0x00040000 (bit 18) — OC_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.
• 0x00080000 (bit 19) — OC_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.
• 0x00100000 (bit 20) — OC_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices

:::
and

::::
old

::::::
SATA.

• 0x00200000 (bit 21) — OC_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.
• 0x00400000 (bit 22) — OC_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.
• 0x00800000 (bit 23) — OC_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.
• 0x01000000 (bit 24) — OC_SCAN_ALLOW_DEVICE_PCI, allow scanning devices directly connected to PCI bus

(e.g. VIRTIO).

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe
devices with APFS file system, and prevent scanning of any devices with HFS or FAT32 file systems in addition
to not scanning APFS file systems on USB, CD, and FireWire drives. The combination reads as:

• OC_SCAN_FILE_SYSTEM_LOCK
• OC_SCAN_DEVICE_LOCK

45

https://habr.com/post/273497/
https://habr.com/post/273497/

• OC_SCAN_ALLOW_FS_APFS
• OC_SCAN_ALLOW_DEVICE_SATA
• OC_SCAN_ALLOW_DEVICE_SASEX
• OC_SCAN_ALLOW_DEVICE_SCSI
• OC_SCAN_ALLOW_DEVICE_NVME

14. SecureBootModel
Type: plist string
Failsafe: Default
Description: Apple Secure Boot hardware model.

Sets Apple Secure Boot hardware model and policy. Specifying this value defines which operating systems will be
bootable. Operating systems shipped before the specified model was released will not boot. Valid values:

• Default — Recent available model, currently set to j137.
• Disabled — No model, Secure Boot will be disabled.
• j137 — iMacPro1,1 (December 2017) minimum macOS 10.13.2 (17C2111)
• j680 — MacBookPro15,1 (July 2018) minimum macOS 10.13.6 (17G2112)
• j132 — MacBookPro15,2 (July 2018) minimum macOS 10.13.6 (17G2112)
• j174 — Macmini8,1 (October 2018) minimum macOS 10.14 (18A2063)
• j140k — MacBookAir8,1 (October 2018) minimum macOS 10.14.1 (18B2084)
• j780 — MacBookPro15,3 (May 2019) minimum macOS 10.14.5 (18F132)
• j213 — MacBookPro15,4 (July 2019) minimum macOS 10.14.5 (18F2058)
• j140a — MacBookAir8,2 (July 2019) minimum macOS 10.14.5 (18F2058)
• j152f — MacBookPro16,1 (November 2019) minimum macOS 10.15.1 (19B2093)
• j160 — MacPro7,1 (December 2019) minimum macOS 10.15.1 (19B88)
• j230k — MacBookAir9,1 (March 2020) minimum macOS 10.15.3 (19D2064)
• j214k — MacBookPro16,2 (May 2020) minimum macOS 10.15.4 (19E2269)
• j223 — MacBookPro16,3 (May 2020) minimum macOS 10.15.4 (19E2265)
• j215 — MacBookPro16,4 (June 2020) minimum macOS 10.15.5 (19F96)
• j185 — iMac20,1 (August 2020) minimum macOS 10.15.6 (19G2005)
• j185f — iMac20,2 (August 2020) minimum macOS 10.15.6 (19G2005)

PlatformInfo and SecureBootModel are independent, allowing to enabling Apple Secure Boot with any SMBIOS.
Setting SecureBootModel to any valid value but Disabled is equivalent to Medium Security of Apple Secure
Boot. To achieve Full Security one will need to also specify

:::
The

:
ApECID value

::::
must

::::
also

:::
be

:::::::
specified

:::
to

:::::::
achieve

::::
Full

::::::::::
Security.

Enabling Apple Secure Boot is more demanding to incorrect configurations, buggy macOS installations, and
unsupported setups. Things to keep in mind

:::::::
consider:

(a) Just like on
::
As

:::::
with T2 Macsyou will not be able to install any

:
, unsigned kernel drivers and several signed

kernel drivers,
:
including NVIDIA Web Drivers,

:::::::
cannot

:::
be

::::::::
installed.

(b) The list of cached drivers may be different, resulting in the need to change the list of Added or Forced kernel
drivers. For example, IO80211Family cannot be injected in this case.

(c) System volume alterations on operating systems with sealing, like macOS 11, may result in the operating
system being unbootable. Do not try to disable system volume encryption unless you disable Apple Secure
Boot

:
is
::::::::
disabled.

(d) If your
:::
the platform requires certain settings, but they were not enabled, because the obvious issues did not trig-

ger before, you may get boot failure
::::
boot

:::::
failure

::::::
might

:::::
occur. Be extra careful with IgnoreInvalidFlexRatio

or HashServices.
(e) Operating systems released before Apple Secure Boot landed (e.g. macOS 10.12 or earlier) will still boot

until UEFI Secure Boot is enabled. This is so, because from Apple Secure Boot point they are treated as
incompatible and are assumed to be handled by the firmware just like Microsoft Windows is.

(f) On older CPUs (e.g. before Sandy Bridge) enabling Apple Secure Boot might cause slightly slower loading
by up to 1 second.

(g) Since Default value will increase with time to support the latest major release operating system, it is not
recommended to use ApECID and Default value together.

Sometimes the already installed operating system may have outdated Apple Secure Boot manifests on the
Preboot partition causing boot failure. If you see the

::::
there

::
is

:
“OCB: Apple Secure Boot prohibits this boot entry,

46

https://support.apple.com/en-us/HT208330

9 NVRAM

9.1 Introduction
Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer
to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware
intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID, representing
which ‘section’ NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
• 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)
• 8BE4DF61-93CA-11D2-AA0D-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)
• 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Please
ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

For proper macOS functioning it is often required to use OC_FIRMWARE_RUNTIME protocol implementation currently
offered as a part of OpenRuntime driver. While it brings any benefits, there are certain limitations which arise depending
on the use.

1. Not all tools may be aware of protected namespaces.
When RequestBootVarRouting is used Boot-prefixed variable access is restricted and protected in a separate
namespace. To access the original variables tools have to be aware of OC_FIRMWARE_RUNTIME logic.

9.2 Properties
1. Add

Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist metadata format. GUIDs must be provided in canonic string format in upper
or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set.
Variables will only be set if not present or deleted. I.e. to overwrite an existing variable value add the variable
name to the Delete section. This approach enables to provide default values till the operating system takes the
lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

2. Delete
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

3. LegacyEnable
Type: plist boolean
Failsafe: false
Description: Enables loading of NVRAM variable file named nvram.plist from EFI volume root.

This file must have root plist dictionary type and contain two fields:

• Version — plist integer, file version, must be set to 1.
• Add — plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to Delete (and Add) phases. Unless LegacyOverwrite is enabled, it will not
overwrite any existing variable. Variables allowed to be set must be specified in LegacySchema. Third-party
scripts may be used to create nvram.plist file. An example of such script can be found in Utilities. The use of
third-party scripts may require ExposeSensitiveData set to 0x3 to provide boot-path variable with OpenCore
EFI partition UUID.

48

https://en.wikipedia.org/wiki/Universally_unique_identifier

Warning: This feature is very dangerous as it passes unprotected data to your firmware variable services. Use it
only when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacyOverwrite
Type: plist boolean
Failsafe: false
Description: Permits overwriting firmware variables from nvram.plist.

Note: Only variables accessible from the operating system will be overwritten.

5. LegacySchema
Type: plist dict
Description: Allows setting select NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.

You can use * value
:::
can

:::
be

::::
used

:
to accept all variables for select GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args
or csr-active-config, as this can bypass SIP.

6. WriteFlash
Type: plist boolean
Failsafe: false
Description: Enables writing to flash memory for all added variables.

Note: This value is recommended to be enabled on most firmwares, but is left configurable for firmwares that
may have issues with NVRAM variable storage garbage collection or alike.

To read NVRAM variable value from macOSone could use
:
,
:
nvram by concatenating variable

:::::
could

:::
be

:::::
used

:::
by

::::::::::::
concatenating

:
GUID and name separated by

::::::::
variables

:::::::::
separated

::
by

::
a : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables.

9.3 Mandatory Variables
Warning: These variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Using
PlatformInfo is the recommend way of setting these variables.

The following variables are mandatory for macOS functioning:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB
BoardSerialNumber. Present on newer Macs (2013+ at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM
Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

9.4 Recommended Variables
The following variables are recommended for faster startup or other improvements:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:csr-active-config
32-bit System Integrity Protection bitmask. Declared in XNU source code in csr.h.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures
Combined FirmwareFeatures and ExtendedFirmwareFeatures. Present on newer Macs to avoid extra parsing
of SMBIOS tables

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask
Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

49

https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0
https://opensource.apple.com/source/xnu/xnu-4570.71.2/bsd/sys/csr.h.auto.html

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID
Hardware BoardProduct (e.g. Mac-35C1E88140C3E6CF). Not present on real Macs, but used to avoid extra
parsing of SMBIOS tables, especially in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB
Hardware BoardSerialNumber. Override for MLB. Present on newer Macs (2013+ at least).

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM
Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:prev-lang:kbd
ASCII string defining default keyboard layout. Format is lang-COUNTRY:keyboard, e.g. ru-RU:252 for Russian
locale and ABC keyboard. Also accepts short forms: ru:252 or ru:0 (U.S. keyboard, compatible with 10.9). Full
decoded keyboard list from AppleKeyboardLayouts-L.dat can be found here. Using non-latin keyboard on 10.14
will not enable ABC keyboard, unlike previous and subsequent macOS versions, and is thus not recommended in
case you need 10.14

:
is
:::::::
needed.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:security-mode
ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily source code in
IOFireWireController.cpp. It is recommended not to set this variable, which may speedup system startup. Setting
to full is equivalent to not setting the variable and none disables FireWire security.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale
One-byte data defining boot.efi user interface scaling. Should be 01 for normal screens and 02 for HiDPI
screens.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:DefaultBackgroundColor
Four-byte BGRA data defining boot.efi user interface background colour. Standard colours include BF BF BF
00 (Light Gray) and 00 00 00 00 (Syrah Black). Other colours may be set at user’s preference.

9.5 Other Variables
The following variables may be useful for certain configurations or troubleshooting:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args
Kernel arguments, used to pass configuration to Apple kernel and drivers. There are many arguments, which
may be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code. Some of the
known boot arguments include:
– acpi_layer=0xFFFFFFFF
– acpi_level=0xFFFF5F (implies ACPI_ALL_COMPONENTS)
–

:::::::::
arch=i386

:::::
(force

::::::
kernel

:::::::::::
architecture

::
to

:::::
i386

:
,
:::
see

:::::::::::
KernelArch

:
)
:

– batman=VALUE (AppleSmartBatteryManager debug mask)
– batman-nosmc=1 (disable AppleSmartBatteryManager SMC interface)
– cpus=VALUE (maximum number of CPUs used)
– debug=VALUE (debug mask)
– io=VALUE (IOKit debug mask)
– keepsyms=1 (show panic log debug symbols)
– kextlog=VALUE (kernel extension loading debug mask)
– nv_disable=1 (disables NVIDIA GPU acceleration)
– nvda_drv=1 (legacy way to enable NVIDIA web driver, removed in 10.12)
– npci=0x2000 (legacy, disables kIOPCIConfiguratorPFM64)
– lapic_dont_panic=1
– slide=VALUE (manually set KASLR slide)
– smcdebug=VALUE (AppleSMC debug mask)
– -amd_no_dgpu_accel (alternative to WhateverGreen’s -radvesa for new GPUs)
– -nehalem_error_disable
– -no_compat_check (disable model checking

::
on

::::::
10.7+)

– -s (single mode)
– -v (verbose mode)
– -x (safe mode)

There are multiple external places summarising macOS argument lists: example 1, example 2.
• 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg

Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadecimal
64-bit values with or without 0x. At different stages boot.efi will request different debugging (logging) modes

50

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/AppleKeyboardLayouts
https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html
https://github.com/acpica/acpica/blob/master/source/include/acoutput.h
https://www.insanelymac.com/forum/topic/260539-1068-officially-released/?do=findComment&comment=1707972
https://github.com/acidanthera/WhateverGreen
https://osxeon.wordpress.com/2015/08/10/boot-argument-options-in-os-x
https://superuser.com/questions/255176/is-there-a-list-of-available-boot-args-for-darwin-os-x

(e.g. after ExitBootServices it will only print to serial). Several booter arguments control whether these requests
will succeed. The list of known requests is covered below:

– 0x00 – INIT.
– 0x01 – VERBOSE (e.g. -v, force console logging).
– 0x02 – EXIT.
– 0x03 – RESET:OK.
– 0x04 – RESET:FAIL (e.g. unknown board-id, hibernate mismatch, panic loop, etc.).
– 0x05 – RESET:RECOVERY.
– 0x06 – RECOVERY.
– 0x07 – REAN:START.
– 0x08 – REAN:END.
– 0x09 – DT (can no longer log to DeviceTree).
– 0x0A – EXITBS:START (forced serial only).
– 0x0B – EXITBS:END (forced serial only).
– 0x0C – UNKNOWN.

In 10.15 debugging support was mostly broken before 10.15.4 due to some kind of refactoring and introduction
of a new debug protocol. Some of the arguments and their values below may not be valid for versions prior to
10.15.4. The list of known arguments is covered below:

– boot-save-log=VALUE — debug log save mode for normal boot.
∗ 0
∗ 1
∗ 2 — (default).
∗ 3
∗ 4 — (save to file).

– wake-save-log=VALUE — debug log save mode for hibernation wake.
∗ 0 — disabled.
∗ 1
∗ 2 — (default).
∗ 3 — (unavailable).
∗ 4 — (save to file, unavailable).

– breakpoint=VALUE — enables debug breaks (missing in production boot.efi).
∗ 0 — disables debug breaks on errors (default).
∗ 1 — enables debug breaks on errors.

– console=VALUE — enables console logging.
∗ 0 — disables console logging.
∗ 1 — enables console logging when debug protocol is missing (default).
∗ 2 — enables console logging unconditionally (unavailable).

– embed-log-dt=VALUE — enables DeviceTree logging.
∗ 0 — disables DeviceTree logging (default).
∗ 1 — enables DeviceTree logging.

– kc-read-size=VALUE — Chunk size used for buffered I/O from network or disk for prelinkedkernel reading
and related. Set to 1MB (0x100000) by default, can be tuned for faster booting.

– log-level=VALUE — log level bitmask.
∗ 0x01 — enables trace logging (default).

– serial=VALUE — enables serial logging.
∗ 0 — disables serial logging (default).
∗ 1 — enables serial logging for EXITBS:END onwards.
∗ 1

:
2 — enables serial logging for EXITBS:START onwards.

∗ 3 — enables serial logging when debug protocol is missing.
∗ 4 — enables serial logging unconditionally.

– timestamps=VALUE — enables timestamp logging.
∗ 0 — disables timestamp logging.
∗ 1 — enables timestamp logging (default).

– log=VALUE — deprecated starting from 10.15.
∗ 1 — AppleLoggingConOutOrErrSet/AppleLoggingConOutOrErrPrint (classical ConOut/StdErr)
∗ 2 — AppleLoggingStdErrSet/AppleLoggingStdErrPrint (StdErr or serial?)
∗ 4 — AppleLoggingFileSet/AppleLoggingFilePrint (BOOTER.LOG/BOOTER.OLD file on EFI partition)

51

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleDebugLog.h

10 PlatformInfo
Platform information is comprised of several identification fields generated or filled manually to be compatible with
macOS services. The base part of the configuration may be obtained from AppleModels, which itself generates a set of
interfaces based on a database in YAML format. These fields are written to three select destinations:

• SMBIOS
• Data Hub
• NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 SmBios.h header file.
However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than one
field and/or destination, so there are two ways to control their update process: manual, where one specifies all the
values

:::
are

::::::::
specified (the default), and semi-automatic, where (Automatic) only select values are specified, and later

used for system configuration.

To inspect SMBIOS contents dmidecode utility can be used. Version with macOS specific enhancements can be
downloaded from Acidanthera/dmidecode.

10.1 Properties
1. Automatic

Type: plist boolean
Failsafe: false
Description: Generate PlatformInfo based on Generic section instead of using values from DataHub, NVRAM,
and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough:

• When enabled SMBIOS, DataHub, and PlatformNVRAM data is unused.
• When disabled Generic section is unused.

Warning: It is strongly discouraged set this option to false when intending to update platform information.
The only reason to do that is when doing minor correction of the SMBIOS present and alike. In all other cases
not using Automatic may lead to hard to debug errors.

2. UpdateDataHub
Type: plist boolean
Failsafe: false
Description: Update Data Hub fields. These fields are read from Generic or DataHub sections depending on
Automatic value.

3. UpdateNVRAM
Type: plist boolean
Failsafe: false
Description: Update NVRAM fields related to platform information.

These fields are read from Generic or PlatformNVRAM sections depending on Automatic value. All the other
fields are to be specified with NVRAM section.

If UpdateNVRAM is set to false the aforementioned variables can be updated with NVRAM section. If UpdateNVRAM
is set to true the behaviour is undefined when any of the fields are present in NVRAM section.

4. UpdateSMBIOS
Type: plist boolean
Failsafe: false
Description: Update SMBIOS fields. These fields are read from Generic or SMBIOS sections depending on
Automatic value.

5. UpdateSMBIOSMode
Type: plist string
Failsafe: Create
Description: Update SMBIOS fields approach:

53

https://github.com/acidanthera/OpenCorePkg/blob/master/AppleModels
https://yaml.org/spec/1.2/spec.html
https://www.dmtf.org/standards/smbios
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Intel/Protocol/DataHub.h
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/SmBios.h
http://www.nongnu.org/dmidecode
https://github.com/acidanthera/dmidecode/releases

• TryOverwrite — Overwrite if new size is <= than the page-aligned original and there are no issues with
legacy region unlock. Create otherwise. Has issues with some firmwares.

• Create — Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without
any fallbacks.

• Overwrite — Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size.
Abort with unspecified state otherwise.

• Custom—Write SMBIOS tables (gEfiSmbios(3)TableGuid) to gOcCustomSmbios(3)TableGuid to workaround
firmwares overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires
patching AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" -
"EB9D2D35" (in ASCII), done automatically by CustomSMBIOSGuid quirk.

Note: A side effect of using Custom approach is making SMBIOS updates exclusive to macOS, avoiding a collission
:::::::
collision

:
with existing Windows activation and custom OEM software but potentially breaking Apple-specific

tools.

6. Generic
Type: plist dictonary

:::::::::::
dictionary

Description: Update all fields. This section is read only when Automatic is active.

7. DataHub
Type: plist dictonary

:::::::::::
dictionary

Optional: When Automatic is true
Description: Update Data Hub fields. This section is read only when Automatic is not active.

8. PlatformNVRAM
Type: plist dictonary

:::::::::::
dictionary

Optional: When Automatic is true
Description: Update platform NVRAM fields. This section is read only when Automatic is not active.

9. SMBIOS
Type: plist dictonary

:::::::::::
dictionary

Optional: When Automatic is true
Description: Update SMBIOS fields. This section is read only when Automatic is not active.

10.2 Generic Properties
1. SpoofVendor

Type: plist boolean
Failsafe: false
Description: Sets SMBIOS vendor fields to Acidanthera.

It is dangerous to use Apple in SMBIOS vendor fields for reasons given in SystemManufacturer description.
However, certain firmwares may not provide valid values otherwise, which could break some software.

2. AdviseWindows
Type: plist boolean
Failsafe: false
Description: Forces Windows support in FirmwareFeatures.

Added bits to FirmwareFeatures:

• FW_FEATURE_SUPPORTS_CSM_LEGACY_MODE (0x1) - Without this bit it is not possible to reboot to Windows
installed on a drive with EFI partition being not the first partition on the disk.

• FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) - Without this bit it is not possible to reboot to
Windows installed on a drive with EFI partition being the first partition on the disk.

3.
:::::::::::::::::::
SystemMemoryStatus
:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
:::::
Auto

::::::::::::
Description:

:::::::::
Indicates

:::::::
whether

:::::::
system

::::::::
memory

::
is

::::::::::
upgradable

::
in

::::::::::::::::
PlatformFeature

:
.
:::::
This

:::::::
controls

::::
the

::::::::
visibility

::
of

:::
the

::::::::
Memory

::::
tab

::
in

::::::
About

:::::
This

:::::
Mac.

:::::
Valid

::::::
values:

:

54

•
::::
Auto

::
—

:::
use

::::
the

:::::::
original

::::::::::::::::
PlatformFeature

:::::
value.

:

•
:::::::::::
Upgradable

::
—

:::::::::
explicitly

:::::
unset

::
PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY

:
(
:::
0x2

:
)
::
in

:::::::::::::::::
PlatformFeature.

:

•
::::::::
Soldered

::
—

:::::::::
explicitly

:::
set

:::::::::::::::::::::::::::::::::::::::
PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY

:
(
:::
0x2

:
)
::
in

::::::::::::::::
PlatformFeature

:
.
:

::::
Note

:
:
:::
On

:::::::
certain

:::::
Mac

::::::
models

::::::::
(namely

::::::::::::::::
MacBookPro10,x

::::
and

:::
any

::::::::::::
MacBookAir

:
),

::::::::::::::::::::::::::::
SPMemoryReporter.spreporter

:::
will

::::::
ignore

::
PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY

::::
and

::::::
assume

:::::
that

::::::
system

::::::::
memory

::
is

:::::::::::::::
non-upgradable.

:

4.
::::::::::::::
ProcessorType

:::::
Type

:
:
::::::
plist

:::::::::
integer

:::::::
Failsafe

:
:
::
0

::::::::::
(Automatic)

::::::::::::
Description:

::::::
Refer

::
to

:::::::::
SMBIOS

::::::::::::::
ProcessorType.

:

5. SystemProductName
Type: plist string
Failsafe: MacPro6,1
Description: Refer to SMBIOS SystemProductName.

6. SystemSerialNumber
Type: plist string
Failsafe: OPENCORE_SN1
Description: Refer to SMBIOS SystemSerialNumber.

7. SystemUUID
Type: plist string, GUID
Failsafe: OEM specified
Description: Refer to SMBIOS SystemUUID.

8. MLB
Type: plist string
Failsafe: OPENCORE_MLB_SN11
Description: Refer to SMBIOS BoardSerialNumber.

9. ROM
Type: plist data, 6 bytes
Failsafe: all zero
Description: Refer to 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM.

10.3 DataHub Properties
1. PlatformName

Type: plist string
Failsafe: Not installed
Description: Sets name in gEfiMiscSubClassGuid. Value found on Macs is platform in ASCII.

2. SystemProductName
Type: plist string
Failsafe: Not installed
Description: Sets Model in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemProductName
in Unicode.

3. SystemSerialNumber
Type: plist string
Failsafe: Not installed
Description: Sets SystemSerialNumber in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS
SystemSerialNumber in Unicode.

4. SystemUUID
Type: plist string, GUID
Failsafe: Not installed
Description: Sets system-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemUUID.

5. BoardProduct
Type: plist string
Failsafe: Not installed

55

Description: Sets board-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS BoardProduct
in ASCII.

6. BoardRevision
Type: plist data, 1 byte
Failsafe: 0
Description: Sets board-rev in gEfiMiscSubClassGuid. Value found on Macs seems to correspond to internal
board revision (e.g. 01).

7. StartupPowerEvents
Type: plist integer, 64-bit
Failsafe: 0
Description: Sets StartupPowerEvents in gEfiMiscSubClassGuid. Value found on Macs is power management
state bitmask, normally 0. Known bits read by X86PlatformPlugin.kext:

• 0x00000001 — Shutdown cause was a PWROK event (Same as GEN_PMCON_2 bit 0)
• 0x00000002 — Shutdown cause was a SYS_PWROK event (Same as GEN_PMCON_2 bit 1)
• 0x00000004 — Shutdown cause was a THRMTRIP# event (Same as GEN_PMCON_2 bit 3)
• 0x00000008 — Rebooted due to a SYS_RESET# event (Same as GEN_PMCON_2 bit 4)
• 0x00000010 — Power Failure (Same as GEN_PMCON_3 bit 1 PWR_FLR)
• 0x00000020 — Loss of RTC Well Power (Same as GEN_PMCON_3 bit 2 RTC_PWR_STS)
• 0x00000040 — General Reset Status (Same as GEN_PMCON_3 bit 9 GEN_RST_STS)
• 0xffffff80 — SUS Well Power Loss (Same as GEN_PMCON_3 bit 14)
• 0x00010000 — Wake cause was a ME Wake event (Same as PRSTS bit 0, ME_WAKE_STS)
• 0x00020000 — Cold Reboot was ME Induced event (Same as PRSTS bit 1 ME_HRST_COLD_STS)
• 0x00040000 — Warm Reboot was ME Induced event (Same as PRSTS bit 2 ME_HRST_WARM_STS)
• 0x00080000 — Shutdown was ME Induced event (Same as PRSTS bit 3 ME_HOST_PWRDN)
• 0x00100000 — Global reset ME Wachdog

::::::::
Watchdog

:
Timer event (Same as PRSTS bit 6)

• 0x00200000 — Global reset PowerManagment Wachdog
::::::::::::::::
PowerManagement

::::::::::
Watchdog

:
Timer event (Same

as PRSTS bit 15)

8. InitialTSC
Type: plist integer, 64-bit
Failsafe: 0
Description: Sets InitialTSC in gEfiProcessorSubClassGuid. Sets initial TSC value, normally 0.

9. FSBFrequency
Type: plist integer, 64-bit
Failsafe: Automatic

:
0

:::::::::::
(Automatic)

Description: Sets FSBFrequency in gEfiProcessorSubClassGuid.

Sets CPU FSB frequency. This value equals to CPU nominal frequency divided by CPU maximum bus ratio and
is specified in Hz. Refer to MSR_NEHALEM_PLATFORM_INFO (CEh) MSR value to determine maximum bus ratio on
modern Intel CPUs.

Note: This value is not used on Skylake and newer but is still provided to follow suit.

10. ARTFrequency
Type: plist integer, 64-bit
Failsafe: Automatic

:
0

:::::::::::
(Automatic)

Description: Sets ARTFrequency in gEfiProcessorSubClassGuid.

This value contains CPU ART frequency, also known as crystal clock frequency. Its existence is exclusive to
Skylake generation and newer. The value is specified in Hz, and is normally 24 MHz for client Intel segment, 25
MHz for server Intel segment, and 19.2 MHz for Intel Atom CPUs. macOS till 10.15 inclusive assumes 24 MHz
by default.

Note: On Intel Skylake X ART frequency may be a little less (approx. 0.25%) than 24 or 25 MHz due to special
EMI-reduction circuit as described in Acidanthera Bugtracker.

11. DevicePathsSupported
Type: plist integer, 32-bit
Failsafe: Not installed

56

https://github.com/acidanthera/bugtracker/issues/448#issuecomment-524914166

Description: Supported bits of extended firmware features bitmask. Refer to AppleFeatures.h for more details.
Lower 32 bits match FirmwareFeaturesMask. Upper 64 bits match ExtendedFirmwareFeaturesMask.

27. ProcessorType
Type: plist integer, 16-bit
Failsafe: Automatic

:
0

:::::::::::
(Automatic)

SMBIOS: APPLE_SMBIOS_TABLE_TYPE131 - ProcessorType
Description: Combined of Processor Major and Minor types.

:::::::::
Automatic

:::::
value

::::::::::
generation

::::
tries

:::
to

:::::::
provide

:::::
most

::::::::
accurate

:::::
value

:::
for

:::
the

:::::::::
currently

:::::::
installed

::::::
CPU.

::::::
When

::::
this

::::
fails

:::::
please

:::::
make

:::::
sure

::
to

::::::
create

:::
an

:::::
issue

:::
and

:::::::
provide

:::::::
sysctl

:::::::::::::
machdep.cpu

:::
and

:::::::::::
dmidecode

:::::::
output.

::::
For

:
a
::::
full

:::
list

:::
of

::::::::
available

::::::
values

::::
and

::::
their

::::::::::
limitations

:::::
(the

:::::
value

::::
will

::::
only

::::::
apply

::
if

:::
the

:::::
CPU

::::
core

::::::
count

:::::::::
matches)

::::
refer

:::
to

::::::
Apple

::::::::
SMBIOS

:::::::::
definitions

:::::::
header

::::
here

:
.
:

28. MemoryFormFactor
Type: plist integer, 8-bit
Failsafe: OEM specified
SMBIOS: Memory Device (Type 17) — Form Factor
Description: Memory form factor. On Macs it should be DIMM or SODIMM.

61

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/bugtracker/issues
https://github.com/acidanthera/dmidecode
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleSmBios.h

11 UEFI

11.1 Introduction
UEFI (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITool and supplementary
utilities can be used.

11.2 Drivers
Depending on the firmware a different set of drivers may be required. Loading an incompatible driver may lead your
:::
the system to unbootable state or even cause permanent firmware damage. Some of the known drivers are listed below:

62

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases

AudioDxe* HDA audio support driver in UEFI firmwares for most Intel and some other analog audio
controllers. Staging driver, refer to acidanthera/bugtracker#740 for known issues in AudioDxe.

CrScreenshotDxe* Screenshot making driver saving images to the root of OpenCore partition (ESP) or any avail-
able writeable filesystem upon pressing F10. This is a modified version of CrScreenshotDxe
driver by Nikolaj Schlej.

ExFatDxe Proprietary ExFAT file system driver for Bootcamp support commonly found in Apple
firmwares. For Sandy Bridge and earlier CPUs ExFatDxeLegacy driver should be used due
to the lack of RDRAND instruction support.

HfsPlus Proprietary HFS file system driver with bless support commonly found in Apple firmwares.
For Sandy Bridge and earlier CPUs HfsPlusLegacy driver should be used due to the lack of
RDRAND instruction support.

HiiDatabase* HII services support driver from MdeModulePkg. This driver is included in most firmwares
starting with Ivy Bridge generation. Some applications with the GUI like UEFI Shell may
need this driver to work properly.

EnhancedFatDxe FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares, and
cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT
support implementation, which leads to corrupted filesystems on write attempt. Embedding
this driver within the firmware may be required in case writing to EFI partition is needed
during the boot process.

NvmExpressDxe* NVMe support driver from MdeModulePkg. This driver is included in most firmwares starting
with Broadwell generation. For Haswell and earlier embedding it within the firmware may be
more favourable in case a NVMe SSD drive is installed.

OpenCanopy* OpenCore plugin implementing graphical interface.
OpenRuntime* OpenCore plugin implementing OC_FIRMWARE_RUNTIME protocol.
OpenUsbKbDxe* USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a

custom USB keyboard driver implementation. This is an alternative to builtin KeySupport,
which may work better or worse depending on the firmware.

PartitionDxe Proprietary partition management driver with Apple Partitioning Scheme support commonly
found in Apple firmwares. This driver can be used to support loading older DMG recoveries
such as macOS 10.9 using Apple Partitioning Scheme. For Sandy Bridge and earlier CPUs
PartitionDxeLegacy driver should be used due to the lack of RDRAND instruction support.

Ps2KeyboardDxe* PS/2 keyboard driver from MdeModulePkg. OpenDuetPkg and some firmwares may not include
this driver, but it is necessary for PS/2 keyboard to work. Note, unlike OpenUsbKbDxe this
driver has no AppleKeyMapAggregator support and thus requires KeySupport to be enabled.

Ps2MouseDxe* PS/2 mouse driver from MdeModulePkg. Some very old laptop firmwares may not include
this driver, but it is necessary for touchpad to work in UEFI graphical interfaces, such as
OpenCanopy.

UsbMouseDxe* USB mouse driver from MdeModulePkg. Some virtual machine firmwares like OVMF may not
include this driver, but it is necessary for mouse to work in UEFI graphical interfaces, such
as OpenCanopy.

VBoxHfs HFS file system driver with bless support. This driver is an alternative to a closed source
HfsPlus driver commonly found in Apple firmwares. While it is feature complete, it is
approximately 3 times slower and is yet to undergo a security audit.

XhciDxe* XHCI USB controller support driver from MdeModulePkg. This driver is included in most
firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it
may be used to support external USB 3.0 PCI cards.

Driver marked with * are bundled with OpenCore. To compile the drivers from UDK (EDK II) use the same command
you normally use

::::
used for OpenCore compilation

:::
can

::
be

::::::
taken, but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK
cd UDK
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc
build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

63

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker/issues/740
https://github.com/acidanthera/OpenCorePkg
https://github.com/LongSoft/CrScreenshotDxe
https://github.com/NikolajSchlej
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/audk

11.3 Tools and Applications
Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below. While some
tools can be launched from within OpenCore, see more details in the Tools subsection of the configuration, most should
be run separately either directly or from Shell.

To boot into OpenShell or any other tool directly save OpenShell.efi under the name of EFI\BOOT\BOOTX64.EFI on
a FAT32 partition. In general it is unimportant whether the partitition

::::::::
partition

:
scheme is GPT or MBR.

While the previous approach works both on Macs and other computers, an alternative Mac-only approach to bless the
tool on an HFS+ or APFS volume:

sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
--folder /Volumes/VOLNAME/DIR/ --setBoot

Listing 3: Blessing tool

Note 1 : You may have to copy /System/Library/CoreServices/BridgeVersion.bin
:::::
should

:::
be

::::::
copied to /Volumes/VOLNAME/DIR.

Note 2 : To be able to use bless you may have to disable
::::::::
disabling System Integrity Protection

::
is

:::::::::
necessary.

Note 3 : To be able to boot you may have to disable Secure Boot
:::::
might

::
be

::::::::
disabled

:
if present.

Some of the known tools are listed below (builtin tools are marked with *):

BootKicker* Enter Apple BootPicker menu (exclusive for Macs with compatible GPUs).
ChipTune* Test BeepGen protocol and generate audio signals of different style and length.
CleanNvram* Reset NVRAM alternative bundled as a standalone tool.
GopStop* Test GraphicsOutput protocol with a simple scenario.
HdaCodecDump* Parse and dump High Definition Audio codec information (requires AudioDxe).
KeyTester* Test keyboard input in SimpleText mode.
MemTest86 Memory testing utility.
OpenControl* Unlock and lock back NVRAM protection for other tools to be able to get full NVRAM

access when launching from OpenCore.
OpenShell* OpenCore-configured UEFI Shell for compatibility with a broad range of firmwares.
PavpProvision Perform EPID provisioning (requires certificate data configuration).
ResetSystem* Utility to perform system reset. Takes reset type as an argument: ColdReset, Firmware,

Shutdown, WarmReset. Defaults to ColdReset.
RtcRw* Utility to read and write RTC (CMOS) memory.
VerifyMsrE2* Check CFG Lock (MSR 0xE2 write protection) consistency across all cores.

11.4 OpenCanopy
OpenCanopy is a graphical OpenCore user interface that runs in External PickerMode and relies on OpenCorePkg
OcBootManagementLib similar to the builtin text interface.

OpenCanopy requires graphical resources located in Resources directory to run. Sample resources (fonts and images)
can be found in OcBinaryData repository. You can find customised icons

::::::::::
Customised

:::::
icons

::::
can

:::
be

::::::
found over the

internet (e.g. here or there).

OpenCanopy provides full support for PickerAttributes and offers a configurable builtin icon set. The default chosen
icon set depends on the DefaultBackgroundColor variable value. For Light Gray Old icon set will be used, for other
colours — the one without a prefix.

Predefined icons are put to \EFI\OC\Resources\Image directory. Full list of supported icons (in .icns format) is
provided below. Missing optional icons will use the closest available icon. External entries will use Ext-prefixed icon if
available (e.g. OldExtHardDrive.icns).

• Cursor — Mouse cursor (mandatory).
• Selected — Selected item (mandatory).
• Selector — Selecting item (mandatory).
• HardDrive — Generic OS (mandatory).
• Apple — Apple OS.
• AppleRecv — Apple Recovery OS.
• AppleTM — Apple Time Machine.

64

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://support.apple.com/HT208330
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg/tree/master/Application/GopStop
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://www.memtest86.com
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
http://github.com/tianocore/edk2
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/blackosx/OpenCanopyIcons
https://applelife.ru/threads/kastomizacija-opencanopy.2945020/

• Audio type can be OCEFIAudio for OpenCore audio files or AXEFIAudio for macOS bootloader audio files.
• Audio localisation is a two letter language code (e.g. en) with an exception for Chinese, Spanish, and

Portuguese. Refer to APPLE_VOICE_OVER_LANGUAGE_CODE definition for the list of all supported localisations.
• Audio path is the base filename corresponding to a file identifier. For macOS bootloader audio paths refer to

APPLE_VOICE_OVER_AUDIO_FILE definition. For OpenCore audio paths refer to OC_VOICE_OVER_AUDIO_FILE
definition. The only exception is OpenCore boot chime file, which is OCEFIAudio_VoiceOver_Boot.wav.

Audio localisation is determined separately for macOS bootloader and OpenCore. For macOS bootloader it is
set in preferences.efires archive in systemLanguage.utf8 file and is controlled by the operating system. For
OpenCore the value of prev-lang:kbd variable is used. When native audio localisation of a particular file is
missing, English language (en) localisation is used. Sample audio files can be found in OcBinaryData repository.

3. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFI controller connection after driver loading.

This option is useful for loading drivers following UEFI driver model as they may not start by themselves.
Examples of such drivers are filesystem or audio drivers. While effective, this option may not be necessary for
drivers performing automatic connection, and may slightly slowdown the boot.

Note: Some firmwares, made by Apple in particular, only connect the boot drive to speedup
:::::
speed

:::
up the boot

process. Enable this option to be able to see all the boot options when having multiple drives.

4. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from OC/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers.

5. Input
Type: plist dict
Failsafe: None
Description: Apply individual settings designed for input (keyboard and mouse) in Input Properties section
below.

6. Output
Type: plist dict
Failsafe: None
Description: Apply individual settings designed for output (text and graphics) in Output Properties section
below.

7. ProtocolOverrides
Type: plist dict
Failsafe: None
Description: Force builtin versions of select protocols described in ProtocolOverrides Properties section below.

Note: all protocol instances are installed prior to driver loading.

8. Quirks
Type: plist dict
Failsafe: None
Description: Apply individual firmware quirks described in Quirks Properties section below.

9. ReservedMemory
Type: plist array
Description: Designed to be filled with plist dict values, describing memory areas exquisite to particular
firmware and hardware functioning, which should not be used by the operating system. An example of such memory
region could be second 256 MB corrupted by Intel HD 3000 or an area with faulty RAM. See ReservedMemory
Properties section below.

66

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OcBinaryData

11.7 APFS Properties
1. EnableJumpstart

Type: plist boolean
Failsafe: false
Description: Load embedded APFS drivers from APFS containers.

APFS EFI driver is bundled in all bootable APFS containers. This option performs loading of signed APFS
drivers with respect to ScanPolicy. See more details in “EFI Jumpstart” section of Apple File System Reference.

2. GlobalConnect
Type: plist boolean
Failsafe: false
Description: Perform full device connection during APFS loading.

Instead of partition handle connection normally used for APFS driver loading every handle is connected recursively.
This may take more time than usual but can be the only way to access APFS partitions on some firmwares like
those found on older HP laptops.

3. HideVerbose
Type: plist boolean
Failsafe: false
Description: Hide verbose output from APFS driver.

APFS verbose output can be useful for debugging.

4. JumpstartHotPlug
Type: plist boolean
Failsafe: false
Description: Load APFS drivers for newly connected devices.

Performs APFS driver loading not only at OpenCore startup but also during boot picker. This permits APFS
USB hot plug. Disable if not required.

5. MinDate
Type: plist integer
Failsafe: 0
Description: Minimal allowed APFS driver date.

APFS driver date connects APFS driver with the calendar release date. Older versions of APFS drivers may
contain unpatched vulnerabilities, which can be used to inflict harm on your

:
to

::::
the computer. This option permits

restricting APFS drivers to only recent releases.

• 0 — require the default supported release date of APFS in OpenCore. The default release date will increase
with time and thus this setting is recommended. Currently set to 2018/06/21.

• -1 — permit any release date to load (strongly discouraged).
• Other — use custom minimal APFS release date, e.g. 20200401 for 2020/04/01. APFS release dates can be

found in OpenCore boot log and OcApfsLib.

6. MinVersion
Type: plist integer
Failsafe: 0
Description: Minimal allowed APFS driver version.

APFS driver version connects APFS driver with the macOS release. APFS drivers from older macOS releases will
become unsupported and thus may contain unpatched vulnerabilities, which can be used to inflict harm on your
::
to

:::
the

:
computer. This option permits restricting APFS drivers to only modern macOS versions.

• 0 — require the default supported version of APFS in OpenCore. The default version will increase with
time and thus this setting is recommended. Currently set to the latest point release from High Sierra from
App Store (748077008000000).

• -1 — permit any version to load (strongly discouraged).
• Other — use custom minimal APFS version, e.g. 1412101001000000 from macOS Catalina 10.15.4. APFS

versions can be found in OpenCore boot log and OcApfsLib.

67

https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h

Enabling this setting plays boot chime through builtin audio support. Volume level is determined by MinimumVolume
and VolumeAmplifier settings and SystemAudioVolume NVRAM variable.

Note: this setting is separate from StartupMute NVRAM variable to avoid conflicts when the firmware is able to
play boot chime.

7. VolumeAmplifier
Type: plist integer
Failsafe: 0
Description: Multiplication coefficient for system volume to raw volume linear translation from 0 to 1000.

Volume level range read from SystemAudioVolume varies depending on the codec. To transform read value in
[0, 127] range into raw volume range [0, 100] the read value is scaled to VolumeAmplifier percents:

RawV olume = MIN(SystemAudioV olume ∗ V olumeAmplifier

100 , 100)

Note: the transformation used in macOS is not linear, but it is very close and this nuance is thus ignored.

11.9 Input Properties
1. KeyFiltering

Type: plist boolean
Failsafe: false
Description: Enable keyboard input sanity checking.

Apparently some boards like GA Z77P-D3 may return uninitialised data in EFI_INPUT_KEY with all input protocols.
This option discards keys that are neither ASCII, nor are defined in the UEFI specification (see tables 107 and
108 in version 2.8).

2. KeyForgetThreshold
Type: plist integer
Failsafe: 0
Description: Remove key unless it was submitted during this timeout in milliseconds.

AppleKeyMapAggregator protocol is supposed to contain a fixed length buffer of currently pressed keys. However,
the majority of the drivers only report key presses as interrupts and pressing and holding the key on the keyboard
results in subsequent submissions of this key with some defined time interval. As a result we use a timeout to
remove once pressed keys from the buffer once the timeout expires and no new submission of this key happened.

This option allows to set this timeout based on your
:::
the platform. The recommended value that works on the

majority of the platforms is 5 milliseconds. For reference, holding one key on VMware will repeat it roughly every
2 milliseconds and the same value for APTIO V is 3-4 milliseconds. Thus it is possible to set a slightly lower
value on faster platforms and slightly higher value on slower platforms for more responsive input.

Note: Some platforms may require different values, higher or lower. For example, when detecting key misses in
OpenCanopy try increasing this value (e.g. to 10), and when detecting key stall, try decreasing this value. Since
every platform is different it may be reasonable to check every value from 1 to 25.

3. KeyMergeThreshold
Type: plist integer
Failsafe: 0
Description: Assume simultaneous combination for keys submitted within this timeout in milliseconds.

Similarly to KeyForgetThreshold, this option works around the sequential nature of key submission. To be able
to recognise simultaneously pressed keys in the situation when all keys arrive sequentially, we are required to set
a timeout within which we assume the keys were pressed together.

Holding multiple keys results in reports every 2 and 1 milliseconds for VMware and APTIO V respectively.
Pressing keys one after the other results in delays of at least 6 and 10 milliseconds for the same platforms. The
recommended value for this option is 2 milliseconds, but it may be decreased for faster platforms and increased
for slower.

4. KeySupport
Type: plist boolean

69

Failsafe: false
Description: Enable internal keyboard input translation to AppleKeyMapAggregator protocol.

This option activates the internal keyboard interceptor driver, based on AppleGenericInput aka (AptioInputFix),
to fill AppleKeyMapAggregator database for input functioning. In case a separate driver is used, such as
OpenUsbKbDxe, this option should never be enabled.

5. KeySupportMode
Type: plist string
Failsafe: empty string
Description: Set internal keyboard input translation to AppleKeyMapAggregator protocol mode.

• Auto — Performs automatic choice as available with the following preference: AMI, V2, V1.
• V1 — Uses UEFI standard legacy input protocol EFI_SIMPLE_TEXT_INPUT_PROTOCOL.
• V2 — Uses UEFI standard modern input protocol EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.
• AMI — Uses APTIO input protocol AMI_EFIKEYCODE_PROTOCOL.

Note: Currently V1, V2, and AMI unlike Auto only do filtering of the particular specified protocol. This may
change in the future versions.

6. KeySwap
Type: plist boolean
Failsafe: false
Description: Swap Command and Option keys during submission.

This option may be useful for keyboard layouts with Option key situated to the right of Command key.

7. PointerSupport
Type: plist boolean
Failsafe: false
Description: Enable internal pointer driver.

This option implements standard UEFI pointer protocol (EFI_SIMPLE_POINTER_PROTOCOL) through select OEM
protocols. The option may be useful on Z87 ASUS boards, where EFI_SIMPLE_POINTER_PROTOCOL is broken.

8. PointerSupportMode
Type: plist string
Failsafe: empty string
Description: Set OEM protocol used for internal pointer driver.

Currently the only supported variant is ASUS, using specialised protocol available on select Z87 and Z97 ASUS
boards. More details can be found in LongSoft/UefiTool#116.

9. TimerResolution
Type: plist integer
Failsafe: 0
Description: Set architecture timer resolution.

This option allows to update firmware architecture timer period with the specified value in 100 nanosecond units.
Setting a lower value generally improves performance and responsiveness of the interface and input handling.

The recommended value is 50000 (5 milliseconds) or slightly higher. Select ASUS Z87 boards use 60000 for the
interface. Apple boards use 100000. You may leave it as

::
In

::::
case

:::
of

::::::
issues,

::::
this

::::::
option

::::
can

:::
be

:::
left

:::
as

:
0in case

there are issues.

11.10 Output Properties
1. TextRenderer

Type: plist string
Failsafe: BuiltinGraphics
Description: Chooses renderer for text going through standard console output.

Currently two renderers are supported: Builtin and System. System renderer uses firmware services for text
rendering. Builtin bypassing firmware services and performs text rendering on its own. Different renderers

70

https://github.com/LongSoft/UEFITool/pull/116

Failsafe: false
Description: Forcibly reinstalls unicode collation services with builtin version. Should be set to true to ensure
UEFI Shell compatibility on platforms providing broken unicode collation. In general legacy Insyde and APTIO
platforms on Ivy Bridge and earlier are affected.

11.12 Quirks Properties
1. DeduplicateBootOrder

Type: plist boolean
Failsafe: false
Description: Remove duplicate entries in BootOrder variable in EFI_GLOBAL_VARIABLE_GUID.

This quirk requires RequestBootVarRouting to be enabled and therefore OC_FIRMWARE_RUNTIME protocol imple-
mented in OpenRuntime.efi.

By redirecting Boot prefixed variables to a separate GUID namespace with the help of RequestBootVarRouting
quirk we achieve multiple goals:

• Operating systems are jailed and only controlled by OpenCore boot environment to enhance security.
• Operating systems do not mess with OpenCore boot priority, and guarantee fluent updates and hibernation

wakes for cases that require reboots with OpenCore in the middle.
• Potentially incompatible boot entries, such as macOS entries, are not deleted or anyhow corrupted.

However, some firmwares do their own boot option scanning upon startup by checking file presence on the
available disks. Quite often this scanning includes non-standard locations, such as Windows Bootloader paths.
Normally it is not an issue, but some firmwares, ASUS firmwares on APTIO V in particular, have bugs. For them
scanning is implemented improperly, and firmware preferences may get accidentally corrupted due to BootOrder
entry duplication (each option will be added twice) making it impossible to boot without resetting NVRAM.

To trigger the bugone should have
:
, some valid boot options (e.g. OpenCore) and then

:::
are

::::::::
required.

::::::
Then install

Windows with RequestBootVarRouting enabled. As
:::
the

:
Windows bootloader option will not be created by

:::
the

:
Windows installer, the firmware will attempt to create it itself, and then corrupt

::::
this

:::::
itself,

:::::::
leading

:::
to

::
a

:::::::::
corruption

::
of

:
its boot option list.

This quirk removes all duplicates in BootOrder variable attempting to resolve the consequences of the bugs upon
OpenCore loading. It is recommended to use this key along with BootProtect option.

2. ExitBootServicesDelay
Type: plist integer
Failsafe: 0
Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very ugly quirk to circumvent "Still waiting for root device" message on select APTIO IV firmwares,
namely ASUS Z87-Pro, when using FileVault 2 in particular. It seems that for some reason they execute code
in parallel to EXIT_BOOT_SERVICES, which results in SATA controller being inaccessible from macOS. A better
approach should be found in some future. Expect 3-5 seconds to be enough in case the quirk is needed.

3. IgnoreInvalidFlexRatio
Type: plist boolean
Failsafe: false
Description: Select firmwares, namely APTIO IV, may contain invalid values in MSR_FLEX_RATIO (0x194) MSR
register. These values may cause macOS boot failure on Intel platforms.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required.

4. ReleaseUsbOwnership
Type: plist boolean
Failsafe: false
Description: Attempt to detach USB controller ownership from the firmware driver. While most firmwares
manage to properly do that, or at least have an option for, select firmwares do not. As a result, operating system
may freeze upon boot. Not recommended unless required.

75

5. RequestBootVarRouting
Type: plist boolean
Failsafe: false
Description: Request redirect of all Boot prefixed variables from EFI_GLOBAL_VARIABLE_GUID to
OC_VENDOR_VARIABLE_GUID.

This quirk requires OC_FIRMWARE_RUNTIME protocol implemented in OpenRuntime.efi. The quirk lets default
boot entry preservation at times when firmwares delete incompatible boot entries. Simply said, you are required
to enable this quirk to be able to

:::
this

::::::
quirk

::
is

:::::::
required

:::
to reliably use Startup Disk preference pane in a firmware

that is not compatible with macOS boot entries by design.

6. TscSyncTimeout
Type: plist integer
Failsafe: 0
Description: Attempts to perform TSC synchronisation with a specified timeout.

The primary purpose of this quirk is to enable early bootstrap TSC synchronisation on some server and laptop
models when running a debug XNU kernel. For the debug kernel the TSC needs to be kept in sync across the cores
before any kext could kick in rendering all other solutions problematic. The timeout is specified in microseconds
and depends on the amount of cores present on the platform, the recommended starting value is 500000.

This is an experimental quirk, which should only be used for the aforementioned problem. In all other cases the
quirk may render the operating system unstable and is not recommended. The recommended solution in the
other cases is to install a kernel driver like VoodooTSCSync, TSCAdjustReset, or CpuTscSync (a more specialised
variant of VoodooTSCSync for newer laptops).

Note: The reason this quirk cannot replace the kernel driver is because it cannot operate in ACPI S3 mode (sleep
wake) and because the UEFI firmwares provide very limited multicore support preventing the precise update of
the MSR registers.

7. UnblockFsConnect
Type: plist boolean
Failsafe: false
Description: Some firmwares block partition handles by opening them in By Driver mode, which results in File
System protocols being unable to install.

Note: The quirk is mostly relevant for select HP laptops with no drives listed.

11.13 ReservedMemory Properties
1. Address

Type: plist integer
Failsafe: 0
Description: Start address of the reserved memory region, which should be allocated as reserved effectively
marking the memory of this type inaccessible to the operating system.

The addresses written here must be part of the memory map, have EfiConventionalMemory type, and page-aligned
(4 KBs).

::::
Note

:
:
:::::
Some

:::::::::
firmwares

::::
may

::::
not

:::::::
allocate

::::::::
memory

:::::
areas

:::::
used

::
by

:::
S3

::::::
(sleep)

::::
and

:::
S4

::::::::::::
(hibernation)

:::::
code

::::::
unless

:::::
CSM

:
is
::::::::
enabled

:::::::
causing

::::
wake

::::::::
failures.

:::::
After

::::::::::
comparing

:::
the

::::::::
memory

:::::
maps

::::
with

:::::
CSM

::::::::
disabled

::::
and

::::::::
enabled,

:::::
these

:::::
areas

:::
can

:::
be

::::::
found

::
in

:::
the

::::::
lower

::::::::
memory

::::
and

:::
can

:::
be

:::::
fixed

:::
up

:::
by

::::::
doing

:::
the

:::::::::::
reservation.

::::
See

:::::::::::::
Sample.plist

:::
for

:::::
more

::::::
details.

:

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Size
Type: plist integer

76

https://support.apple.com/HT202796
https://github.com/RehabMan/VoodooTSCSync
https://github.com/interferenc/TSCAdjustReset
https://github.com/lvs1974/CpuTscSync

Failsafe: 0
Description: Size of the reserved memory region, must be page-aligned (4 KBs).

4.
::::
Type
:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
:::::::::
Reserved

::::::::::::
Description:

::::::::
Memory

::::::
region

:::::
type

::::::::
matching

::::
the

:::::
UEFI

::::::::::::
specification

::::::::
memory

:::::::::
descriptor

::::::
types.

:::::::::
Mapping:

:

•
::::::::
Reserved

::
—

:::::::::::::::::::::::
EfiReservedMemoryType

•
:::::::::::
LoaderCode

::
—

::::::::::::::
EfiLoaderCode

•
:::::::::::
LoaderData

::
—

::::::::::::::
EfiLoaderData

•
::::::::::::::::
BootServiceCode

::
—

:::::::::::::::::::::
EfiBootServicesCode

•
::::::::::::::::
BootServiceData

::
—

:::::::::::::::::::::
EfiBootServicesData

•
::::::::::::
RuntimeCode

::
—

::::::::::::::::::::::::
EfiRuntimeServicesCode

•
::::::::::::
RuntimeData

::
—

::::::::::::::::::::::::
EfiRuntimeServicesData

•
:::::::::
Available

::
—

:::::::::::::::::::::::
EfiConventionalMemory

•
:::::::::::
Persistent

::
—

:::::::::::::::::::::
EfiPersistentMemory

•
:::::::::::::::
UnusableMemory

::
—

:::::::::::::::::::
EfiUnusableMemory

•
::::::::::::::::::
ACPIReclaimMemory

::
—

:::::::::::::::::::::
EfiACPIReclaimMemory

•
::::::::::::::
ACPIMemoryNVS

::
—

::::::::::::::::::
EfiACPIMemoryNVS

•
:::::::::::::::
MemoryMappedIO

::
—

:::::::::::::::::::
EfiMemoryMappedIO

•
::::::::::::::::::::::::
MemoryMappedIOPortSpace

::
—

::::::::::::::::::::::::::::
EfiMemoryMappedIOPortSpace

•
:::::::
PalCode

::
—

:::::::::::
EfiPalCode

5. Enabled
Type: plist boolean
Failsafe: false
Description: This region will not be reserved unless set to true.

77

12 Troubleshooting

12.1 Legacy Apple OS
Older operating systems may be more complicated to install, but sometimes can be necessary to use for all kinds
of reasons. While a compatible board identifier and CPUID are the obvious requiremenets

:::::::::::
requirements

:
for proper

functioning of an older operating system, there are many other less obvious things to keep in mind
:::::::
consider. This

section tries to cover a common set of issues relevant to installing older macOS operating systems.

:::::
While

::::::
newer

:::::::::
operating

:::::::
systems

::::
can

::
be

:::::::::::
downloaded

::::
over

::::
the

::::::::
internet,

:::::
older

:::::::::
operating

:::::::
systems

:::
did

::::
not

::::
have

:::::::::::
installation

:::::
media

:::
for

::::::
every

:::::
minor

::::::::
release,

::
so

:::
to

:::
get

::
a

::::::::::
compatible

:::::::::::
distribution

::::
one

::::
may

:::::
have

::
to

:::::::::
download

::
a

:::::::::::::
device-specific

::::::
image

:::
and

:::::
mod

::
it

:
if
::::::::::
necessary.

:::
To

:::
get

:::
the

::::
list

::
of

:::
the

::::::::
bundled

:::::::::::::
device-specific

::::::
builds

:::
for

::::::
legacy

:::::::::
operating

:::::::
systems

::::
one

:::
can

:::::
visit

:::
this

::::::::
archived

::::::
Apple

::::::::
Support

::::::
article.

::::::
Since

::
it

::
is

:::
not

:::::::
always

::::::::
accurate,

::::
the

:::::
latest

::::::::
versions

:::
are

::::::
listed

::::::
below.

:

12.1.1 macOS 10.8 and 10.9

• Disk images on these systems use Apple Partitioning Scheme and will require the proprietary PartitionDxe
driver to run DMG recovery and installation. It is possible to set DmgLoading to Disabled to run the recovery
without DMG loading avoiding the need for PartitionDxe.

• Cached kernel images often do not contain family drivers for networking (IONetworkingFamily) or audio
(IOAudioFamily) requiring one to use

::
the

::::
use

::
of

:
Force loading in order to inject networking or audio drivers.

12.1.2 macOS 10.7

• All previous issues apply.

•
:::::
SSSE3

:::::::
support

::::
(not

::
to

:::
be

::::::::
confused

:::::
with

:::::
SSE3

::::::::
support)

::
is

::
a

::::
hard

:::::::::::
requirement

:::
for

:::::::
macOS

:::::
10.7

::::::
kernel.

:

• Many kexts, including Lilu and its
:::::
when

::::::
32-bit

::::::
kernel

::
is

:::::
used

::::
and

:
a
:::
lot

:::
of

:::::
Lilu plugins, are unsupported on

macOS 10.7 and older as they require newer kernel APIs, which are not part of the macOS 10.7 SDK.

• Prior to macOS 10.8 KASLR sliding is not supported, which will result in memory allocation failures on firmwares
that utilise lower memory for their own purposes. Refer to acidanthera/bugtracker#1125 for tracking.

• 32-bit kernel interaction is unsupported and will lead to issues like kernel patching or injection failure.

12.1.3 macOS 10.6

• All previous issues apply.

•
:::::
SSSE3

:::::::
support

::
is

:
a
:::::::::::
requirement

:::
for

:::::::
macOS

::::
10.6

::::::
kernel

::::
with

::::::
64-bit

:::::::::
userspace

::::::::
enabled.

:::::
This

:::::::::
limitation

:::
can

:::::::
mostly

::
be

:::::
lifted

:::
by

::::::::
enabling

:::
the

::::::::::::::::
LegacyCommpage

::::::
quirk.

• Last released installer images for macOS 10.6 are macOS 10.6.7 builds 10J3250 (for MacBookPro8,x) and
10J4139 (for iMac12,x), without Xcode). These images are limited to their target model identifiers and have no
-no_compat_check boot argument support. Modified images (with ACDT suffix) without model restrictions can
be found here, assuming that you legally own macOS 10.6

:
is
:::::::
legally

::::::
owned. Read DIGEST.txt for more details.

Keep in mind,
::::
Note

:
that these are the earliest tested versions of macOS 10.6 with OpenCore.

You can also patch out model checking yourself
::::::
Model

::::::::
checking

::::
may

::::
also

:::
be

::::::
erased

:
by editing OSInstall.mpkg with

e.g. Flat Package Editor by making Distribution script to always return true in hwbeModelCheck function. Since
updating the only file in the image and not corrupting other files can be difficult and may cause slow booting due to
kernel cache date changes, it is recommended to script image rebuilding as shown below:

#!/bin/bash
Original.dmg is original image, OSInstall.mpkg is patched package
mkdir RO
hdiutil mount Original.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RO
cp RO/.DS_Store DS_STORE
hdiutil detach RO -force
rm -rf RO
hdiutil convert Original.dmg -format UDRW -o ReadWrite.dmg

78

https://web.archive.org/web/20170705003629/https://support.apple.com/en-us/HT204319
https://github.com/acidanthera/bugtracker/issues/1125
https://mega.nz/folder/z5YUhYTb#gA_IRY5KMuYpnNCg7kR3ug

mkdir RW
xattr -c OSInstall.mpkg
hdiutil mount ReadWrite.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RW
cp OSInstall.mpkg RW/System/Installation/Packages/OSInstall.mpkg
killall Finder fseventsd
rm -rf RW/.fseventsd
cp DS_STORE RW/.DS_Store
hdiutil detach RW -force
rm -rf DS_STORE RW
hdiutil convert ReadWrite.dmg -format UDZO -o ReadOnly.dmg

12.1.4
:::::::
macOS

:::::
10.5

•
:::
All

::::::::
previous

:::::
issues

::::::
apply.

:

•
::::
This

:::::::
macOS

:::::::
version

::::
does

::::
not

:::::::
support

:::::::
x86_64

:::::
kernel

::::
and

:::::::
requires

:::::
i386

:::::
kernel

::::::::::
extensions

::::
and

:::::::
patches.

:

•
::::
This

:::::::
macOS

:::::::
version

::::
uses

::::
the

::::
first

:::::
(V1)

:::::::
version

::
of

:::::::::::::::::
prelinkedkernel,

::::::
which

::::
has

::::
kext

:::::::
symbol

::::::
tables

::::::::::
corrupted

::
by

::::
the

::::
kext

::::::
tools.

:::::
This

:::::::
nuance

:::::::
renders

::::::::::::::::
prelinkedkernel

::::
kext

::::::::
injection

::::::::::
impossible

::
in
:::::::::::
OpenCore.

::::::
Mkext

::::
kext

::::::::
injection

:::
will

::::
still

::::
work

::::::::
without

:::::::::
noticeable

:::::::::::
performance

:::::
drain

::::
and

:::
will

:::
be

::::::
chosen

:::::::::::::
automatically

:::::
when

::::::::::::
KernelCache

:
is
:::
set

:::
to

:::::
Auto.

:

•
::::
Last

::::::::
released

:::::::
installer

::::::
image

:::
for

::::::::
macOS

::::
10.5

::
is

:::::::
macOS

::::::
10.5.7

:::::
build

:::::::
9J3050

:::
(for

:::::::::::::::
MacBookPro5,3

:
).

:::::::
Unlike

::::
the

::::::
others,

::::
this

:::::
image

::
is
::::
not

:::::::
limited

::
to

:::
the

::::::
target

::::::
model

:::::::::
identifiers

::::
and

::::
can

::
be

:::::
used

::
as

:::
is.

::::
The

:::::::
original

:::::::
9J3050

:::::
image

:::
can

:::
be

:::::
found

:::::
here,

:::::::::
assuming

:::::::
macOS

::::
10.5

::
is

::::::
legally

:::::::
owned.

:::::
Read

:::::::::::
DIGEST.txt

::
for

:::::
more

:::::::
details.

:::::
Note

:::::
that

::::
this

::
is

:::
the

:::::::
earliest

::::::
tested

::::::
version

:::
of

:::::::
macOS

::::
10.5

::::
with

::::::::::
OpenCore.

:

12.1.5
:::::::
macOS

:::::
10.4

•
:::
All

::::::::
previous

:::::
issues

::::::
apply.

:

•
::::
This

:::::::
macOS

:::::::
version

::::
has

::
a
:::::
hard

::::::::::::
requirement

:::
to

::::::
access

:::
all

::::
the

::::::::
optional

:::::::::
packages

:::
on

::::
the

:::::::
second

:::::
DVD

:::::
disk

::::::::::
installation

::::::
media,

:::::::::
requiring

:::::
either

::::
two

:::::
disks

:::
or

::::
USB

::::::
media

:::::::::::
installation.

:

•
::::
Last

::::::::
released

::::::::
installer

:::::::
images

:::
for

:::::::
macOS

:::::
10.4

:::
are

:::::::
macOS

:::::::
10.4.10

:::::::
builds

::::::::
8R4061a

:::
(for

:::::::::::::::
MacBookPro3,1)

:::::
and

::::::
8R4088

:::
(for

::::::::
iMac7,1

:::
)).

::::::
These

:::::::
images

:::
are

:::::::
limited

:::
to

:::::
their

::::::
target

::::::
model

:::::::::
identifiers

::::
just

::::
like

::::
the

::::::
newer

:::::::
macOS

:::::::
versions.

:::::::::
Modified

::::::::
8R4088

::::::
images

::::::
(with

:::::
ACDT

:::::
suffix)

::::::::
without

::::::
model

::::::::::
restrictions

::::
can

:::
be

::::::
found

::::
here

:
,
:::::::::
assuming

::::::
macOS

::::
10.4

::
is
:::::::
legally

::::::
owned.

::::::
Read

:::::::::::
DIGEST.txt

:::
for

:::::
more

::::::
details.

:::::
Note

:::::
that

:::::
these

:::
are

:::
the

:::::::
earliest

::::::
tested

::::::::
versions

::
of

:::::::
macOS

::::
10.4

::::
with

::::::::::
OpenCore.

:

12.2 UEFI Secure Boot
OpenCore is designed to provide a secure boot chain between your firmware and your

:::::::
firmware

::::
and

:
operating system.

On most x86 platforms trusted loading is implemented via UEFI Secure Boot model. Not only OpenCore fully supports
this model, but it also extends its capabilities to ensure sealed configuration via vaulting and provide trusted loading to
the operating systems using custom verification, such as Apple Secure Boot. Proper secure boot chain requires several
steps and careful configuration of select settings as explained below:

1. Enable Apple Secure Boot by setting SecureBootModel if you need to run macOS. Note, that not every macOS
is compatible with Apple Secure Boot and there are several other restrictions as explained in Apple Secure Boot
section.

2. Disable DMG loading by setting DmgLoading to Disabled if you are concerned
::::
users

:::::
have

::::::::
concerns

:
of loading

old vulnerable DMG recoveries. This is not required, but recommended. For the actual tradeoffs see the details
in DMG loading section.

3. Make sure that APFS JumpStart functionality restricts the loading of old vulnerable drivers by setting MinDate
and MinVersion to 0. More details are provided in APFS JumpStart section. An alternative is to install apfs.efi
driver manually.

4. Make sure that you do not need Force driver loading and can still boot
:
is
::::
not

:::::::
needed

::::
and

:
all the operating

systems you need
:::
are

::::
still

::::::::
bootable.

79

https://mega.nz/folder/inRBTarD#zanf7fUbviwz3WHBU5xpCg
https://mega.nz/folder/D3ASzLzA#7sjYXE2X09f6aGjol_C7dg
https://en.wikipedia.org/wiki/UEFI_Secure_Boot

5. Make sure that ScanPolicy restricts loading from undesired devices. It is a good idea to prohibit all removable
drivers or unknown filesystems.

6. Sign all the installed drivers and tools with your
:::
the

:
private key. Do not sign tools that provide administrative

access to your
:::
the computer, like UEFI Shell.

7. Vault your
:::
the configuration as explained Vaulting section.

8. Sign all OpenCore binaries (BOOTX64.efi, BOOTIa32.efi, Bootstrap.efi, OpenCore.efi) used on this system
with the same private key.

9. Sign all third-party operating system (not made by Microsoft or Apple) bootloaders if you need them
::::::
needed. For

Linux there is an option to install Microsoft-signed Shim bootloader as explained on e.g. Debian Wiki.

10. Enable UEFI Secure Boot in your firmware preferences and install the certificate with a private keyyou own.
Details on how to generate a certificate can be found in various articles, like this one, and are out of the scope of
this document. If you need to launch Windows you

::::::::
Windows

::
is

:::::::
needed

:::
one

:
will also need to add the Microsoft

Windows Production CA 2011. If you need to
:::
To launch option ROMs or decided to use signed Linux driversyou

will also need the Microsoft UEFI Driver Signing CA,
:::::::::
Microsoft

::::::
UEFI

::::::
Driver

:::::::
Signing

::::
CA

:::
will

::::
also

:::
be

:::::::
needed.

11. Password-protect changing firmware settings to ensure that UEFI Secure Boot cannot be disabled without your
:::
the

:::::
user’s

:
knowledge.

12.3 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFI installations as well as systems partially supporting UEFI
boot, like Windows 7, might work with some extra precautions. Things to keep in mind

:::::::
consider:

• MBR (Master Boot Record) installations are legacy and will not be supported.

• All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

• macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.

• Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID.
Be warned, on old firmwares it may be invalid, i.e. not random. In case you still have

:
If

:::::
there

::::
still

::::
are issues,

consider using HWID or KMS38 license or making the use Custom UpdateSMBIOSMode. Other nuances of Windows
activation are out of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases you will need Windows support
software from Boot Camp

:
is
::::::::
required. For simplicity of the download process or when configuring an already installed

Windows version a third-party utility, Brigadier, can be used successfully. Note, that you may have to download and
install 7-Zip

:::::
7-Zip

::::
may

:::
be

:::::::::::
downloaded

::::
and

::::::::
installed prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. In case you already have

::
If

:::::
there

:
is
:
a previous version of Boot Camp installed you will have to remove it

::
it

::::::
should

:::
be

::::::::
removed first by running msiexec

/x BootCamp.msi command. BootCamp.msi file is located in BootCamp/Drivers/Apple directory and can be reached
through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, sometimes you may have to
address some of them

::
the

::::
rest

:::::
may

:::
still

:::::
have

:::
to

::
be

:::::::::
addressed

:
manually:

• To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUser.

• RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser (this one is usually not needed).

80

https://wiki.debian.org/SecureBoot
https://habr.com/en/post/273497
http://go.microsoft.com/fwlink/?LinkID=321192
http://go.microsoft.com/fwlink/?LinkID=321192
http://go.microsoft.com/fwlink/?LinkId=321194
http://go.microsoft.com/fwlink/?LinkId=321194
https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432

• To access Apple filesystems like HFS and APFS separate software may need to be installed. Some of the known
utilities are: Apple HFS+ driver (hack for Windows 10), HFSExplorer, MacDrive, Paragon APFS, Paragon
HFS+, TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as this
often leads to irrecoverable data loss.

Why do I see Basic data partition in Boot Camp Startup Disk control panel?

Boot Camp control panel uses GPT partition table to obtain each boot option name. After installing Windows
separately you

::
the

:::::::::
partition

:
will have to relabel the partition

::
be

:::::::::
relabelled

:
manually. This can be done with many

utilities including open-source gdisk utility. Reference example:

PS C:\gdisk> .\gdisk64.exe \\.\physicaldrive0
GPT fdisk (gdisk) version 1.0.4

Command (? for help): p
Disk \\.\physicaldrive0: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes
Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries
Total free space is 4029 sectors (2.0 MiB)

Number Start (sector) End (sector) Size Code Name
1 2048 1023999 499.0 MiB 2700 Basic data partition
2 1024000 1226751 99.0 MiB EF00 EFI system partition
3 1226752 1259519 16.0 MiB 0C01 Microsoft reserved ...
4 1259520 419428351 199.4 GiB 0700 Basic data partition

Command (? for help): c
Partition number (1-4): 4
Enter name: BOOTCAMP

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!

Do you want to proceed? (Y/N): Y
OK; writing new GUID partition table (GPT) to \\.\physicaldrive0.
Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.

Listing 4: Relabeling Windows volume

How to choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTFS support, such as NTFS-3G, Paragon NTFS, Tuxera NTFS or Seagate Paragon
Driver break certain macOS functionality, including Startup Disk preference pane normally used for operating system
selection. While the recommended option remains not to use such drivers as they commonly corrupt the filesystem, and
prefer the driver bundled with macOS with optional write support (command or GUI), there still exist vendor-specific
workarounds for their products: Tuxera, Paragon, etc.

12.4 Debugging
Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or
DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with
GDB or IDA Pro is also available. For GDB check OpenCore Debug page. For IDA Proyou will need IDA Pro

:
,
:::::::
version

7.3 or newer , refer to
:
is

:::::::
needed,

::::
and

:
Debugging the XNU Kernel with IDA Pro for more details

::::
may

::::
also

::::
help.

81

https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/post-24180079
http://www.catacombae.org/hfsexplorer
https://sourceforge.net/projects/gptfdisk
https://www.tuxera.com/community/open-source-ntfs-3g
https://www.seagate.com/support/software/paragon
https://www.seagate.com/support/software/paragon
https://support.apple.com/HT202796
http://osxdaily.com/2013/10/02/enable-ntfs-write-support-mac-os-x
https://mounty.app
https://www.tuxera.com/products/tuxera-ntfs-for-mac/faq
https://kb.paragon-software.com/article/6604
https://github.com/acidanthera/OpenCorePkg/tree/master/Debug
https://www.hex-rays.com/products/ida/support/tutorials/index.shtml

To obtain the log during boot you can make the use of serial port debugging
:::
can

:::
be

:::::
used. Serial port debugging is

enabled in Target, e.g. 0xB for onscreen with serial. To initialise serial within OpenCore use SerialInit configuration
option. For macOS your best choice are

::
the

:::::
best

::::::
choice

::
is CP2102-based UART devices. Connect motherboard TX to

USB UART RX, and motherboard GND to USB UART GND. Use screen utility to get the output, or download GUI
software, such as CoolTerm.

Note: On several motherboards (and possibly USB UART dongles) PIN naming may be incorrect. It is very common
to have GND swapped with RX, thusyou have to connect ,

:
motherboard “TX”

::::
must

:::
be

::::::::::
connected to USB UART GND,

and motherboard “GND” to USB UART RX.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output
corruption. To additionally enable XNU kernel serial output you will need debug=0x8 boot argument

:
is

:::::::
needed.

12.5 Tips and Tricks
1. How to debug boot failure?

Normally it is enough to obtain the actual error message. For this ensure that:

• You have a
::
A

:
DEBUG or NOOPT version of OpenCore

::
is

::::
used.

• Logging is enabled (1) and shown onscreen (2): Misc → Debug → Target = 3.
• Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO

(0x00000040) levels are visible onscreen: Misc → Debug → DisplayLevel = 0x80000042.
• Critical error messages, like DEBUG_ERROR, stop booting: Misc → Security → HaltLevel = 0x80000000.
• Watch Dog is disabled to prevent automatic reboot: Misc → Debug → DisableWatchDog = true.
• Boot Picker (entry selector) is enabled: Misc → Boot → ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one. For early boot troubleshooting,
for instance, when OpenCore menu does not appear, using UEFI Shell (bundled with OpenCore) may help to
see early debug messages.

2. How to debug macOS boot failure?

• Refer to boot-args values like debug=0x100, keepsyms=1, -v, and similar.
• Do not forget about AppleDebug and ApplePanic properties.
• Take care of Booter, Kernel, and UEFI quirks.
• Consider using serial port to inspect early kernel boot failures. For this you may need debug=0x108,

serial=5, and msgbuf=1048576 arguments
::::
boot

:::::::::
arguments

::::
are

::::::
needed. Refer to the patches in Sample.plist

when dying before serial init.
• Always read the logs carefully.

3. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

4. How to choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from
UEFI Setup, with the macOS Startup Disk preference, or the Windows Boot Camp Control Panel. Since
choosing OpenCore’s BOOTx64.EFI as a primary boot option limits this functionality in addition to several
firmwares deleting incompatible boot options, potentially including those created by macOS, you

::::
users

:
are

strongly encouraged to use the RequestBootVarRouting quirk, which will preserve your
:::
the

:
selection made in the

operating system within the OpenCore variable space. Note, that RequestBootVarRouting requires a separate
driver for functioning.

5. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use macrecovery.py , builtin tool
:::
can

:::
be

::::
used.

82

https://freeware.the-meiers.org
https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macrecovery/macrecovery.py

For offline installation refer to How to create a bootable installer for macOS article. Apart from App Store and
softwareupdate utility there also are third-party utilities to download an offline image.

6. Why do online recovery images (*.dmg) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.

7. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
on MacRumors.com.

8. Why do Find&Replace patches must equal in length?

For machine code (x86 code) it is not possible to do differently sized replacements due to relative addressing. For
ACPI code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More
detailed explanation can be found on AppleLife.ru or in the ACPI section of this document.

9. How can I decide which Booter quirks to use?

These quirks originate from AptioMemoryFix driver but provide a wider set of changes specific to modern
systems. Note, that OpenRuntime driver is required for most configurations. To get a configuration similar to
AptioMemoryFix you may try enabling the following set of quirks

::::::
should

::
be

::::::::
enabled:

• ProvideConsoleGop (UEFI quirk)
• AvoidRuntimeDefrag
• DiscardHibernateMap
• EnableSafeModeSlide
• EnableWriteUnprotector
• ForceExitBootServices
• ProtectMemoryRegions
• ProvideCustomSlide
• RebuildAppleMemoryMap
• SetupVirtualMap

However, as of today such set is strongly discouraged as some of these quirks are not necessary to be enabled or
need additional quirks. For example, DevirtualiseMmio and ProtectUefiServices are often required, while
DiscardHibernateMap and ForceExitBootServices are rarely necessary.

Unfortunately for some quirks like RebuildAppleMemoryMap, EnableWriteUnprotector, ProtectMemoryRegions,
SetupVirtualMap, and SyncRuntimePermissions there is no definite approach even on similar systems, so trying
all their combinations may be required for optimal setup. Refer to individual quirk descriptions in this document
for more details.

83

https://support.apple.com/HT201372
https://github.com/corpnewt/gibMacOS
https://forums.macrumors.com/threads/opencore-on-the-mac-pro.2207814
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Introduction
	Generic Terms

	Installation and Upgrade
	Contribution
	Coding conventions
	Quirks Properties
	Booter
	Introduction
	Properties
	MmioWhitelist Properties
	Quirks Properties

	DeviceProperties
	Introduction
	Properties
	Common Properties

	Kernel
	Introduction
	Properties
	Block Properties
	Emulate Properties
	Force Properties
	Quirks Properties
	Scheme Properties

	Properties
	Boot Properties
	Security Properties
	NVRAM
	Introduction
	Properties
	Mandatory Variables
	Recommended Variables
	Other Variables

	PlatformInfo
	Properties
	Generic Properties
	DataHub Properties

	UEFI
	Introduction
	Drivers
	Tools and Applications
	OpenCanopy
	APFS Properties
	Input Properties
	Output Properties
	Quirks Properties
	ReservedMemory Properties

	Troubleshooting
	Legacy Apple OS
	UEFI Secure Boot
	Windows support
	Debugging
	Tips and Tricks

