
OpenCore

Reference Manual (0.6.5
:::
.6)

[2021.02.02]

Copyright ©2018-2021 vit9696

3 Setup

3.1 Directory Structure

ESP
EFI

BOOT
BOOTx64.efi

OC
ACPI

DSDT.aml
SSDT-1.aml
MYTABLE.aml

Drivers
MyDriver.efi

OtherDriver.efi
Kexts

MyKext.kext

OtherKext.kext
Resources

Audio
Font
Image

Label
Tools

Tool.efi
OpenCore.efi
config.plist
vault.plist
vault.sig

boot
nvram.plist
opencore-YYYY-MM-DD-HHMMSS.txt
panic-YYYY-MM-DD-HHMMSS.txt
SysReport

Figure 1. Directory Structure

When directory boot is used the directory structure used should follow the description on Directory Structure figure.
Available entries include:

• BOOTx64.efi and
::
or

:
Bootstrap

::::::::
BOOTIa32.efi

Initial bootstrap loaders, which loads
::::
load OpenCore.efiunless it was already started as a driver. BOOTx64.efi

is loaded by the firmware by default according to UEFI specification, and Bootstrap.efi can be registered as a
custom option

:::
yet

::
it

:::
can

::::
also

:::
be

::::::::
renamed

::::
and

::::
put

::
to

::
a
:::::::
custom

:::::::
location

:
to let OpenCore coexist with operating

5

systems using BOOTx64.efi as their own loaders (e.g. Windows), see BootProtect
::::::::::::::
LauncherOption for more

details.
• boot

Duet bootstrap loader, which initialises UEFI environment on legacy BIOS firmware and loads OpenCore.efi
similarly to other bootstrap loaders. Modern Duet bootstrap loader will default to OpenCore.efi on the same
partition when present.

• ACPI
Directory used for storing supplemental ACPI information for ACPI section.

• Drivers
Directory used for storing supplemental UEFI drivers for UEFI section.

• Kexts
Directory used for storing supplemental kernel information for Kernel section.

• Resources
Directory used for storing media resources, such as audio files for screen reader support. See UEFI Audio
Properties section for more details. This directory also contains image files for graphical user interface. See
OpenCanopy section for more details.

• Tools
Directory used for storing supplemental tools.

• OpenCore.efi
Main booter driver

::::::::::
application

:
responsible for operating system loading. The directory OpenCore.efi resides is

called the root directory. By default root directory is set to EFI\OC, however, when launching OpenCore.efi
directly or through Bootstrap.efi

:
a
:::::::
custom

:::::::::
launcher, other directories containing OpenCore.efi can also be

supported.
• config.plist

OC Config.
• vault.plist

Hashes for all files potentially loadable by OC Config.
• vault.sig

Signature for vault.plist.
• SysReport

Directory containing system reports generated by SysReport option.
• nvram.plist

OpenCore variable import file.
• opencore-YYYY-MM-DD-HHMMSS.txt

OpenCore log file.
• panic-YYYY-MM-DD-HHMMSS.txt

Kernel panic log file.

Note: It is not guaranteed that paths longer than OC_STORAGE_SAFE_PATH_MAX (128 characters including
0-terminator) will be accessible within OpenCore.

3.2 Installation and Upgrade
To install OpenCore reflect the Configuration Structure described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information regarding external resources
such as ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate Kext List document available in OpenCore
repository. Vaulting information is provided in Security Properties section of this document.

OC config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. OpenDuetPkg is one of the known
UEFI environment providers for legacy systems. To run OpenCore on such a legacy system, OpenDuetPkg can be
installed with a dedicated tool — BootInstall (bundled with OpenCore). Third-party utilities can be used to perform
this on systems other than macOS.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting
the configuration compared to the previous release, and Changelog.md document, containing the list of modifications

6

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/corpnewt/gibMacOS

Codestyle. The codebase follows EDK II codestyle with few changes and clarifications.

• Write inline documentation for the functions and variables only once: in headers, where a header prototype is
available, and inline for static variables and functions.

• Use line length of 120 characters or less, preferably 100 characters.
• Use spaces after casts, e.g. (VOID *)(UINTN) Variable.
• Use

:::
two

::::::
spaces

:::
to

::::::
indent

::::::::
function

:::::::::
arguments

:::::
when

::::::::
splitting

::::::
lines.

•
:::::
Prefix

::::::
public

:::::::::
functions

::::
with

::::::
either

:::
Oc

::
or

::::::::
another

:::::::
distinct

::::::
name.

:

•
:::
Do

:::
not

::::::
prefix

::::::
private

:::::::
static

:::::::::
functions,

:::
but

::::::
prefix

:::::::
private

:::::::::::
non-static

::::::::
functions

:::::
with

:::::::::
Internal

:
.

•
:::
Use

:
SPDX license headers as shown in acidanthera/bugtracker#483.

3.5 Debugging
The codebase incorporates EDK II debugging and few custom features to improve the experience.

• Use module prefixes, 2-5 letters followed by a colon (:), for debug messages. For OpenCorePkg use OC:, for
libraries and drivers use their own unique prefixes.

• Do not use dots (.) in the end of debug messages and separate EFI_STATUS, printed by %r, with a hyphen (e.g.
OCRAM: Allocation of %u bytes failed - %r\n).

• Use DEBUG_CODE_BEGIN () and DEBUG_CODE_END () constructions to guard debug checks that may potentially
reduce the performance of release builds and are otherwise unnecessary.

• Use DEBUG macro to print debug messages during normal functioning, and RUNTIME_DEBUG for debugging after
EXIT_BOOT_SERVICES.

• Use DEBUG_VERBOSE debug level to leave debug messages for future debugging of the code, which are currently
not necessary. By default DEBUG_VERBOSE messages are ignored even in DEBUG builds.

• Use DEBUG_INFO debug level for all non critical messages (including errors) and DEBUG_BULK_INFO for extensive
messages that should not appear in NVRAM log that is heavily limited in size. These messages are ignored in
RELEASE builds.

• Use DEBUG_ERROR to print critical human visible messages that may potentially halt the boot process, and
DEBUG_WARN for all other human visible errors, RELEASE builds included.

When trying to find the problematic change it is useful to rely on git-bisect functionality. There also are some
unofficial resources that provide per-commit binary builds of OpenCore, such as Dortania.

9

https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/bugtracker/issues/483
https://git-scm.com/docs/git-bisect
https://dortania.github.io/builds

8. Mask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Find in size otherwise.

9. Replace
Type: plist data
Failsafe: Empty data
Description: Replacement data of one or more bytes.

10. ReplaceMask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

11. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

5.5 Quirks Properties
1. AllowRelocationBlock

Type: plist boolean
Failsafe: false
Description: Allows booting macOS through a relocation block.

Relocation block is a scratch buffer allocated in lower 4 GB to be used for loading the kernel and related structures
by EfiBoot on firmwares where lower memory is otherwise occupied by the (assumed to be) non-runtime data.
Right before kernel startup the relocation block is copied back to lower addresses. Similarly all the other addresses
pointing to relocation block are also carefully adjusted. Relocation block can be used when:

• No better slide exists (all the memory is used)
• slide=0 is forced (by an argument or safe mode)
• KASLR (slide) is unsupported (this is macOS 10.7 or older)

This quirk requires ProvideCustomSlide to also be enabled and generally needs AvoidRuntimeDefrag to work
correctly. Hibernation is not supported when booting with a relocation block (but relocation block is not always
used when the quirk is enabled).

Note: While this quirk is required to run older macOS versions on platforms with used lower memory it is not
compatible with some hardware and macOS 11. In this case you

:::
one may try to use EnableSafeModeSlide

instead.

2. AvoidRuntimeDefrag
Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on firmware that uses
SMM backing for select services such as variable storage. SMM may try to access physical addresses, but they get
moved by boot.efi.

Note: Most types of firmware, apart from Apple and VMware, need this quirk.

3. DevirtualiseMmio
Type: plist boolean
Failsafe: false
Description: Remove runtime attribute from select MMIO regions.

This option reduces stolen memory footprint from the memory map by removing runtime bit for known memory
regions. This quirk may result in the increase of KASLR slides available, but is not necessarily compatible with

17

13. LapicKernelPanic
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)
Description: Disables kernel panic on LAPIC interrupts.

14. LegacyCommpage
Type: plist boolean
Failsafe: false
Requirement: 10.4 - 10.6
Description: Replaces the default 64-bit commpage bcopy implementation with one that does not require
SSSE3, useful for legacy platforms. This prevents a commpage no match for last panic due to no available
64-bit bcopy functions that do not require SSSE3.

15. PanicNoKextDump
Type: plist boolean
Failsafe: false
Requirement: 10.13 (not required for older)
Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

16. PowerTimeoutKernelPanic
Type: plist boolean
Failsafe: false
Requirement: 10.15 (not required for older)
Description: Disables kernel panic on setPowerState timeout.

An additional security measure was added to macOS Catalina (10.15) causing kernel panic on power change
timeout for Apple drivers. Sometimes it may cause issues on misconfigured hardware, notably digital audio, which
sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

17.
:::::::::::::::::::
SetApfsTrimTimeout
:::::
Type

:
:
::::::
plist

::::::::
integer

:::::::
Failsafe

:
:
:::
-1

:::::::::::::
Requirement

:
:
:::::
10.14

::::
(not

::::::::
required

:::
for

::::::
older)

::::::::::::
Description:

::::
Set

::::
trim

::::::::
timeout

::
in

::::::::::::
microseconds

:::
for

::::::
APFS

::::::::::
filesystems

:::
on

::::::
SSDs.

:

:::::
APFS

:::::::::
filesystem

::
is
::::::::
designed

::
in

::
a
::::
way

::::
that

:::
the

::::::
space

:::::::::
controlled

:::
via

:::::::::
spaceman

::::::::
structure

::
is
::::::
either

::::
used

:::
or

::::
free.

:::::
This

::::
may

::
be

::::::::
different

:::
in

:::::
other

::::::::::
filesystems

:::::
where

::::
the

:::::
areas

::::
can

::
be

:::::::
marked

:::
as

:::::
used,

::::
free,

::::
and

:::::::::
unmapped

:
.
:::
All

::::
free

::::::
space

:
is
:::::::::
trimmed

::::::::::::::::::::::
(unmapped/deallocated)

::
at

:::::::
macOS

::::::::
startup.

:::::
The

::::::::
trimming

::::::::::
procedure

:::
for

::::::
NVMe

::::::
drives

::::::::
happens

:::
in

::::
LBA

::::::
ranges

::::
due

:::
to

:::
the

::::::
nature

:::
of

:::
DSM

:::::::::
command

::::
with

:::
up

::
to

::::
256

::::::
ranges

::::
per

:::::::::
command.

:::::
The

:::::
more

::::::::::
fragmented

::::
the

:::::::
memory

:::
on

:::
the

:::::
drive

:::
is,

:::
the

:::::
more

::::::::::
commands

::::
are

::::::::
necessary

:::
to

::::
trim

:::
all

::::
the

:::
free

::::::
space.

:

:::::::::
Depending

:::
on

::::
the

::::
SSD

:::::::::
controller

::::
and

::::
the

:::::
drive

::::::::::::
fragmenation

::::
trim

::::::::::
procedure

::::
may

:::::
take

:::::::::::
considerable

:::::::
amount

:::
of

::::
time,

::::::::
causing

:::::::::
noticeable

:::::
boot

:::::::::
slowdown

::::::
APFS

::::::
driver

:::::::::
explicitly

:::::::
ignores

::::::::::
previously

::::::::::
unmapped

:::::
areas

::::
and

::::::
trims

::::
them

:::
on

:::::
boot

:::::
again

::::
and

::::::
again.

::::
To

:::::::::::
workaround

:::::
boot

:::::::::
slowdown

:::::::
macOS

:::::
driver

::::::::::
introduced

::
a
::::::::
timeout

:
(
:::::::::
9.999999

:::::::
seconds)

:::::
that

:::::
stops

::::
trim

:::::::::
operation

::::::
when

::
it

:::
did

::::
not

:::::::
manage

:::
to

::::::::
complete

:::
in

:::::
time.

::::
On

:::::
many

:::::::::::
controllers,

::::
such

:::
as

::::::::
Samsung,

::::::
where

::::
the

:::::::::::
deallocation

::
is

:::
not

:::::
very

::::
fast,

::::
the

:::::::
timeout

::
is

:::::::
reached

:::::
very

:::::::
quickly.

::::::::::
Essentially

::
it
::::::
means

:::::
that

::::::
macOS

::::
will

:::
try

:::
to

::::
trim

:::
all

:::
the

:::::
same

:::::
lower

::::::
blocks

::::
that

:::::
have

:::::::
already

:::::
been

:::::::::::
deallocated,

:::
but

::::
will

:::::
never

:::::
have

:::::::
enough

::::
time

::
to

::::::::::
deallocate

::::::
higher

::::::
blocks

::::
once

::::
the

::::::::::::
fragmentation

:::::::::
increases.

:::::
This

::::::
means

::::
that

:::::::::
trimming

:::
on

:::::
these

:::::
SSDs

::::
will

::
be

:::::::
broken

::::
soon

:::::
after

:::
the

:::::::::::
installation,

::::::::
causing

:::::
extra

::::
wear

:::
to

:::
the

::::::
flash.

::::
One

::::
way

::
to

:::::::::::
workaround

::::
the

::::::::
problem

::
is

::
to

::::::::
increase

:::
the

::::::::
timeout

::
to

::
a
:::::
very

::::
high

::::::
value,

::::::
which

::
at

::::
the

::::
cost

::
of

:::::
slow

::::
boot

:::::
times

::::::
(extra

::::::::
minutes)

::::
will

::::::
ensure

:::::
that

::
all

::::
the

::::::
blocks

:::
are

::::::::
trimmed.

::::
For

::::
this

::::
one

:::
can

:::
set

::::
this

::::::
option

:::
to

:
a
:::::
high

:::::
value,

::::
e.g.

:::::::::::
4294967295

:
.
:

:::::::
Another

::::
way

::
is

::
to

::::::
utilise

::::::::::::::::
over-provisioning

::
if

:
it
::
is
::::::::::
supported

::
or

::::::
create

::
a

::::::::
dedicated

::::::::::
unmapped

:::::::::
partition

:::::
where

::::
the

::::::
reserve

::::::
blocks

::::
can

:::
be

:::::
found

:::
by

::::
the

:::::::::
controller.

:::
In

::::
this

::::
case

::::
the

::::
trim

:::::::::
operation

::::
can

::::
also

:::
be

:::::::
disabled

:::
by

:::::::
setting

::
a

::::
very

:::
low

::::::::
timeout.

::::
e.g.

::::
999

:
.
::::
See

:::::
more

::::::
details

::
in

::::
this

:
article

:
.
:

18. ThirdPartyDrives

32

https://interface31.ru/tech_it/2015/04/mozhno-li-effektivno-ispolzovat-ssd-bez-podderzhki-trim.html

• Mark the option as the default option to boot.
• Boot option through the picker or without it depending on the ShowPicker option.
• Show picker on failure otherwise.

Note 1 : This process is meant to work reliably only when RequestBootVarRouting option is enabled or the firmware
does not control UEFI boot options (OpenDuetPkg or custom BDS). Without BootProtect

:::::::::::::::
LauncherOption it also is

possible that other operating systems overwrite OpenCore, make sure to enable it when planning to use them.

Note 2 : UEFI variable boot options’ boot arguments will be removed if present as they may contain arguments
compromising the operating system, which is undesired once secure boot is enabled.

Note 3 : Some operating systems, namely Windows, will create their boot option and mark it as top most upon first
boot or after NVRAM Reset. When this happens default boot entry choice will update till next manual reconfiguration.

8.2 Properties
1. Boot

Type: plist dict
Description: Apply boot configuration described in Boot Properties section below.

2. BlessOverride
Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders,
for example, \EFI\debian\grubx64.efi for Debian bootloader. This allows unusual boot paths to be au-
tomatically discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such
as \System\Library\CoreServices\boot.efi or \EFI\Microsoft\Boot\bootmgfw.efi, but unlike predefined
bless paths they have highest priority.

3. Debug
Type: plist dict
Description: Apply debug configuration described in Debug Properties section below.

4. Entries
Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

5. Security
Type: plist dict
Description: Apply security configuration described in Security Properties section below.

6. Tools
Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

Note: Select tools, for example, UEFI Shell, are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain. For tool examples check the UEFI section of this document.

8.3 Boot Properties
1. ConsoleAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for console.

Text renderer supports colour arguments as a sum of foreground and background colours according to UEFI
specification. The value of black background and black foreground (0) is reserved. List of colour names:

• 0x00 — EFI_BLACK

36

• 0x01 — EFI_BLUE
• 0x02 — EFI_GREEN
• 0x03 — EFI_CYAN
• 0x04 — EFI_RED
• 0x05 — EFI_MAGENTA
• 0x06 — EFI_BROWN
• 0x07 — EFI_LIGHTGRAY
• 0x08 — EFI_DARKGRAY
• 0x09 — EFI_LIGHTBLUE
• 0x0A — EFI_LIGHTGREEN
• 0x0B — EFI_LIGHTCYAN
• 0x0C — EFI_LIGHTRED
• 0x0D — EFI_LIGHTMAGENTA
• 0x0E — EFI_YELLOW
• 0x0F — EFI_WHITE
• 0x00 — EFI_BACKGROUND_BLACK
• 0x10 — EFI_BACKGROUND_BLUE
• 0x20 — EFI_BACKGROUND_GREEN
• 0x30 — EFI_BACKGROUND_CYAN
• 0x40 — EFI_BACKGROUND_RED
• 0x50 — EFI_BACKGROUND_MAGENTA
• 0x60 — EFI_BACKGROUND_BROWN
• 0x70 — EFI_BACKGROUND_LIGHTGRAY

Note: This option may not work well with System text renderer. Setting a background different from black could
help testing proper GOP functioning.

2. HibernateMode
Type: plist string
Failsafe: None
Description: Hibernation detection mode. The following modes are supported:

• None — Avoid hibernation (Recommended).
• Auto — Use RTC and NVRAM detection.
• RTC — Use RTC detection.
• NVRAM — Use NVRAM detection.

3. HideAuxiliary
Type: plist boolean
Failsafe: false
Description: Hides auxiliary entries from picker menu by default.

An entry is considered auxiliary when at least one of the following applies:

• Entry is macOS recovery.
• Entry is macOS Time Machine.
• Entry is explicitly marked as Auxiliary.
• Entry is system (e.g. Reset NVRAM).

To see all entries picker menu needs to be reloaded in extended mode by pressing Spacebar key. Hiding auxiliary
entries may increase boot performance for multidisk systems.

4.
:::::::::::::::
LauncherOption
:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
:::::::::
Disabled

::::::::::::
Description:

::::::::
Register

::::::::
launcher

::::::
option

:::
in

::::::::
firmware

::::::::::
preferences

:::
for

:::::::::::
persistence.

:

:::::
Valid

::::::
values:

:

•
::::::::
Disabled

::
—

:::
do

::::::::
nothing.

:

•
::::
Full

::
—

::::::
create

::
or

:::::::
update

:::::::::::
top-priority

::::
boot

::::::
option

:::
in

:::::
UEFI

::::::::
variable

:::::::
storage

::
at

::::::::::
bootloader

::::::::
startup.

:::
For

::::
this

::::::
option

::
to

:::::
work

:::::::::::::::::::::::
RequestBootVarRouting

::
is

:::::::
required

:::
to

:::
be

::::::::
enabled.

37

•
:::::
Short

::
—

:::::
create

::
a
:::::
short

::::
boot

::::::
option

:::::::
instead

::
of

::
a

::::::::
complete

::::
one.

:::::
This

::::::
variant

::
is

::::::
useful

::
for

:::::
some

:::::
older

::::::::::
firmwares,

::::::
Insyde

::
in

::::::::::
particular,

:::
but

::::::::
possibly

:::::::
others,

:::::
which

:::::::
cannot

::::::
handle

::::
full

::::::
device

::::::
paths.

:

::::
This

::::::
option

::::::::
provides

::::::::::
integration

:::::
with

:::::::::::
third-party

:::::::::
operating

::::::
system

:::::::::::
installation

::::
and

::::::::
upgrade

::
at

::::
the

:::::
times

:::::
they

::::::::
overwrite

:::::::::::::::::::::::
\EFI\BOOT\BOOTx64.efi

:::
file.

:::
By

::::::::
creating

::
a
:::::::
custom

::::::
option

:::
in

::::
this

:::
file

:::::
path

::::::::
becomes

:::
no

::::::
longer

:::::
used

::
for

:::::::::::::
bootstrapping

::::::::::
OpenCore.

:::::
The

::::
path

:::::
used

:::
for

:::::::::::::
bootstrapping

::
is

::::::::
specified

::
in

::::::::::::::
LauncherPath

::::::
option.

:

::::
Note

::
1:
::::::
Some

::::::
types

::
of

::::::::
firmware

:::::
may

::::
have

::::::
faulty

:::::::::
NVRAM,

:::
no

:::::
boot

::::::
option

::::::::
support,

:::
or

:::::
other

::::::::::::::::
incompatibilities.

:::::
While

::::::::
unlikely,

::::
the

:::
use

:::
of

::::
this

::::::
option

:::::
may

::::
even

::::::
cause

:::::
boot

:::::::
failures.

::::::
This

::::::
option

:::::::
should

::
be

:::::
used

::::::::
without

::::
any

::::::::
warranty

::::::::::
exclusively

:::
on

::::
the

::::::
boards

:::::::
known

:::
to

:::
be

:::::::::::
compatible.

:::::::
Check acidanthera/bugtracker#1222

::
for

::::::
some

::::::
known

:::::
issues

:::::
with

:::::::
Haswell

::::
and

:::::
other

:::::::
boards.

:

::::
Note

::
2:

:::
Be

::::::
aware

::::
that

:::::
while

:::::::::
NVRAM

:::::
reset

::::::::
executed

::::
from

::::::::::
OpenCore

::::::
should

:::
not

:::::
erase

::::
the

::::
boot

::::::
option

:::::::
created

:::
in

:::::::::
Bootstrap

:
,
:::::::::
executing

:::::::::
NVRAM

::::
reset

:::::
prior

:::
to

:::::::
loading

:::::::::
OpenCore

::::
will

:::::::
remove

:::
it.

::::
For

:::::::::
significant

:::::::::::::::
implementation

:::::::
updates

::::
(e.g.

:::
in

:::::::::
OpenCore

:::::
0.6.4)

:::::
make

:::::
sure

::
to

:::::::
perform

::::::::
NVRAM

:::::
reset

:::::
with

:::::::::
Bootstrap

:::::::
disabled

::::::
before

::::::::::
reenabling.

5.
:::::::::::::
LauncherPath
:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
::::::::
Default

::::::::::::
Description:

:::::::
Launch

:::::
path

:::
for

::::::::::::::::
LauncherOption.

:

:::::::
Default

:::::
stays

:::
for

::::::::
launched

::::::::::::::
OpenCore.efi,

::::
any

:::::
other

::::::
path,

::::
e.g.

:::::::::::::::::::
\EFI\Launcher.efi,

::::
can

:::
be

:::::
used

::
to

::::::::
provide

::::::
custom

::::::::
loaders,

:::::
which

::::
are

::::::::
supposed

:::
to

::::
load

:::::::::::::
OpenCore.efi

::::::::::
themselves.

:

6. PickerAttributes
Type: plist integer
Failsafe: 0
Description: Sets specific attributes for picker.

Different pickers may be configured through the attribute mask containing OpenCore-reserved (BIT0~BIT15) and
OEM-specific (BIT16~BIT31) values.

Current OpenCore values include:

• 0x0001 — OC_ATTR_USE_VOLUME_ICON, provides custom icons for boot entries:
For Tools OpenCore will try to load a custom icon and fallback to the default icon:
– ResetNVRAM — Resources\Image\ResetNVRAM.icns — ResetNVRAM.icns from icons directory.
– Tools\<TOOL_RELATIVE_PATH>.icns — icon near the tool file with appended .icns extension.

For custom boot Entries OpenCore will try to load a custom icon and fallback to the volume icon or the
default icon:
– <ENTRY_PATH>.icns — icon near the entry file with appended .icns extension.

For all other entries OpenCore will try to load a volume icon and fallback to the default icon:
– .VolumeIcon.icns file at Preboot volume directory for APFS (if present).
– .VolumeIcon.icns file at Preboot root for APFS (otherwise).
– .VolumeIcon.icns file at volume root for other filesystems.

Volume icons can be set in Finder. Note, that enabling this may result in external and internal icons to be
indistinguishable.

• 0x0002 — OC_ATTR_USE_DISK_LABEL_FILE, provides custom rendered titles for boot entries:
– .disk_label (.disk_label_2x) file near bootloader for all filesystems.
– <TOOL_NAME>.lbl (<TOOL_NAME>.l2x) file near tool for Tools.

Prerendered labels can be generated via disklabel utility or bless command. When disabled or missing
text labels (.contentDetails or .disk_label.contentDetails) are to be rendered instead.

• 0x0004 — OC_ATTR_USE_GENERIC_LABEL_IMAGE, provides predefined label images for boot entries without
custom entries. May give less detail for the actual boot entry.

• 0x0008 — OC_ATTR_HIDE_THEMED_ICONS, prefers builtin icons for certain icon categories to match the theme
style. For example, this could force displaying the builtin Time Machine icon. Requires OC_ATTR_USE_VOLUME_ICON.

• 0x0010 — OC_ATTR_USE_POINTER_CONTROL, enable pointer control in the picker when available. For example,
this could make use of mouse or trackpad to control UI elements.

38

https://github.com/acidanthera/bugtracker/issues/1222

Development and debug kernels produce more helpful kernel panics. Consider downloading and installing
KernelDebugKit from developer.apple.com when debugging a problem. To activate a development kernel the
boot argument kcsuffix=development should be added. Use uname -a command to ensure that the current
loaded kernel is a development (or a debug) kernel.

In case OpenCore kernel panic saving mechanism was not used, kernel panics may still be found in
/Library/Logs/DiagnosticReports directory. Starting with macOS Catalina kernel panics are stored in JSON
format, so they need to be preprocessed before passing to kpdescribe.sh:

cat Kernel.panic | grep macOSProcessedStackshotData |
python -c 'import json,sys;print(json.load(sys.stdin)["macOSPanicString"])'

3. DisableWatchDog
Type: plist boolean
Failsafe: false
Description: Some types of firmware may not succeed in booting the operating system quickly, especially in
debug mode, which results in the watchdog timer aborting the process. This option turns off the watchdog timer.

4. DisplayDelay
Type: plist integer
Failsafe: 0
Description: Delay in microseconds performed after every printed line visible onscreen (i.e. console).

5. DisplayLevel
Type: plist integer, 64 bit
Failsafe: 0
Description: EDK II debug level bitmask (sum) showed onscreen. Unless Target enables console (onscreen)
printing, onscreen debug output will not be visible. The following levels are supported (discover more in
DebugLib.h):

• 0x00000002 (bit 1) — DEBUG_WARN in DEBUG, NOOPT, RELEASE.
• 0x00000040 (bit 6) — DEBUG_INFO in DEBUG, NOOPT.
• 0x00400000 (bit 22) — DEBUG_VERBOSE in custom builds.
• 0x80000000 (bit 31) — DEBUG_ERROR in DEBUG, NOOPT, RELEASE.

6. SerialInit
Type: plist boolean
Failsafe: false
Description: Perform serial port initialisation.

This option will perform serial port initialisation within OpenCore prior to enabling (any) debug logging. Serial
port configuration is defined via PCDs at compile time in gEfiMdeModulePkgTokenSpaceGuid GUID. Default
values as found in MdeModulePkg.dec are as follows:

• PcdSerialBaudRate — Baud rate: 115200.
• PcdSerialLineControl — Line control: no parity, 8 data bits, 1 stop bit.

See more details in Debugging section.

7. SysReport
Type: plist boolean
Failsafe: false
Description: Produce system report on ESP folder.

This option will create a SysReport directory on ESP partition unless it is already present. The directory will
contain ACPIand SMBIOSdumps. ,

:::::::::
SMBIOS,

::::
and

::::::
audio

::::::
codec

:::::::
dumps.

::::::
Audio

::::::
codec

::::::
dumps

:::::::
require

:::
an

::::::
audio

:::::::
backend

::::::
driver

::
to

:::
be

:::::::
loaded.

:

Note: For security reasons SysReport option is not available in RELEASE builds. Use a DEBUG build if this option
is needed.

8. Target
Type: plist integer
Failsafe: 0

41

https://developer.apple.com
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/Library/DebugLib.h

Description: A bitmask (sum) of enabled logging targets. By default all the logging output is hidden, so this
option is required to be set when debugging is necessary.

The following logging targets are supported:

• 0x01 (bit 0) — Enable logging, otherwise all log is discarded.
• 0x02 (bit 1) — Enable basic console (onscreen) logging.
• 0x04 (bit 2) — Enable logging to Data Hub.
• 0x08 (bit 3) — Enable serial port logging.
• 0x10 (bit 4) — Enable UEFI variable logging.
• 0x20 (bit 5) — Enable non-volatile UEFI variable logging.
• 0x40 (bit 6) — Enable logging to file.

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -lw0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFI variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some types of firmware may truncate it much earlier or drop completely if they have no
memory. Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFI
variable log use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-log |
awk '{gsub(/%0d%0a%00/,"");gsub(/%0d%0a/,"\n")}1'

Warning: Some types of firmware appear to have flawed NVRAM garbage collection. This means that they may
not be able to always free space after variable deletion. Do not use non-volatile NVRAM logging without extra
need on such devices.

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS.txt at EFI volume root with log contents
(the upper case letter sequence is replaced with date and time from the firmware). Please be warned that some
file system drivers present in firmware are not reliable and may corrupt data when writing files through UEFI.
Log writing is attempted in the safest manner and thus, is very slow. Ensure that DisableWatchDog is set to
true when a slow drive is used. Try to avoid frequent use of this option when dealing with flash drives as large
I/O amounts may speedup memory wear and render the flash drive unusable quicker.

When interpreting the log, note that the lines are prefixed with a tag describing the relevant location (module) of
the log line allowing better attribution of the line to the functionality. The list of currently used tags is provided
below.

Drivers and tools:

• BMF — OpenCanopy, bitmap font
• BS — Bootstrap
• GSTT — GoptStop
• HDA — AudioDxe
• KKT — KeyTester
• MMDD — MmapDump
• OCPAVP — PavpProvision
• OCRST — ResetSystem
• OCUI — OpenCanopy
• OC — OpenCore main

:
,
::::
also

::::::::::
OcMainLib

:

• VMOPT — VerifyMemOpt

Libraries:

• AAPL — OcDebugLogLib, Apple EfiBoot logging

42

• OCABC — OcAfterBootCompatLib
• OCAE — OcAppleEventLib
• OCAK — OcAppleKernelLib
• OCAU — OcAudioLib
• OCAV — OcAppleImageVerificationLib
• OCA —- OcAcpiLib
• OCBP — OcAppleBootPolicyLib
• OCB — OcBootManagementLib
• OCCL — OcAppleChunkListLib
• OCCPU — OcCpuLib
• OCC — OcConsoleLib
• OCDC — OcDriverConnectionLib
• OCDH — OcDataHubLib
• OCDI — OcAppleDiskImageLib
• OCFS — OcFileLib
• OCFV — OcFirmwareVolumeLib
• OCHS — OcHashServicesLib
• OCI4 — OcAppleImg4Lib
• OCIC — OcImageConversionLib
• OCII — OcInputLib
• OCJS — OcApfsLib
• OCKM — OcAppleKeyMapLib
• OCL — OcDebugLogLib
• OCMCO — OcMachoLib
• OCME — OcHeciLib
• OCMM — OcMemoryLib
•

::::
OCPE

::
—

::::::::::::
OcPeCoffLib,

:::::::::::::::
OcPeCoffExtLib

:

• OCPI — OcFileLib, partition info
• OCPNG — OcPngLib
• OCRAM — OcAppleRamDiskLib
• OCRTC — OcRtcLib
• OCSB — OcAppleSecureBootLib
• OCSMB — OcSmbiosLib
• OCSMC — OcSmcLib
• OCST — OcStorageLib
• OCS — OcSerializedLib
• OCTPL — OcTemplateLib
• OCUC — OcUnicodeCollationLib
• OCUT — OcAppleUserInterfaceThemeLib
• OCXML — OcXmlLib

8.5 Security Properties
1. AllowNvramReset

Type: plist boolean
Failsafe: false
Description: Allow CMD+OPT+P+R handling and enable showing NVRAM Reset entry in boot picker.

Note 1 : It is known that some Lenovo laptops have a firmware bug, which makes them unbootable after performing
NVRAM reset. See acidanthera/bugtracker#995 for more details.

Note 2 : Resetting NVRAM will also erase all the boot options otherwise not backed up with bless (e.g. Linux).

2. AllowSetDefault
Type: plist boolean
Failsafe: false
Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in boot picker.

3. ApECID
Type: plist integer, 64 bit

43

https://github.com/acidanthera/bugtracker/issues/995

Failsafe: 0
Description: Apple Enclave Identifier.

Setting this value to any non-zero 64-bit integer will allow using personalised Apple Secure Boot identifiers. To
use this setting, make sure to generate a random 64-bit number with a cryptographically secure random number
generator. As an alternative, first 8 bytes of SystemUUID can be used for ApECID, this is found in macOS 11 for
Macs without the T2 chip.

With this value set and SecureBootModel valid and not Disabled it is possible to achieve Full Security of
Apple Secure Boot.

To start using personalised Apple Secure Boot, the operating system will have to be reinstalled or personalised.
Unless the operating system is personalised, macOS DMG recovery cannot be loaded. If DMG recovery is missing,
it can be downloaded with macrecovery utility and put to com.apple.recovery.boot as explained in Tips and
Tricks section. Note that DMG loading needs to be set to Signed to use any DMG with Apple Secure Boot.

To personalise an existing operating system use bless command after loading to macOS DMG recovery. Mount
the system volume partition, unless it has already been mounted, and execute the following command:

bless bless --folder "/Volumes/Macintosh HD/System/Library/CoreServices" \
--bootefi --personalize

Before macOS 11, which introduced a dedicated x86legacy model for models without the T2 chip, personalised
Apple Secure Boot may not work as expected. When reinstalling the operating system, macOS Installer from
macOS 10.15 and older, will usually run out of free memory on the /var/tmp partition when trying to install
macOS with the personalised Apple Secure Boot. Soon after downloading the macOS installer image an Unable
to verify macOS error message will appear. To workaround this issue allocate a dedicated RAM disk of 2 MBs
for macOS personalisation by entering the following commands in macOS recovery terminal before starting the
installation:

disk=$(hdiutil attach -nomount ram://4096)
diskutil erasevolume HFS+ SecureBoot $disk
diskutil unmount $disk
mkdir /var/tmp/OSPersonalizationTemp
diskutil mount -mountpoint /var/tmp/OSPersonalizationTemp $disk

4. AuthRestart
Type: plist boolean
Failsafe: false
Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. A dedicated
terminal command can be used to perform authenticated restarts: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restart by saving disk encryption key split in NVRAM and RTC, which
despite being removed as soon as OpenCore starts, may be considered a security risk and thus is optional.

5. BlacklistAppleUpdate
Type: plist boolean
Failsafe: false
Description: Ignore boot options trying to update Apple peripheral firmware (e.g. MultiUpdater.efi).

Note: This option exists due to some operating systems, namely macOS Big Sur, being incapable of disabling
firmware updates with the NVRAM variable (run-efi-updater).

6. BootProtectType: plist stringFailsafe: NoneDescription: Attempt to provide bootloader persistence.

Valid values:

• None — do nothing.

44

https://support.apple.com/en-us/HT208330
https://github.com/acidanthera/bugtracker/issues/1255

• Bootstrap — create or update top-priority \EFI\OC\Bootstrap\Bootstrap.efi boot option in UEFI
variable storage at bootloader startup. For this option to work RequestBootVarRouting is required to be
enabled.

• BootstrapShort — create a short boot option instead of a complete one, otherwise equivalent to Bootstrap.
This variant is useful for some older firmwares, Insyde in particular, but possibly others, which cannot handle
full device paths.

This option provides integration with third-party operating system installation and upgrade at the times they
overwrite \EFI\BOOT\BOOTx64.efi file. By creating a custom option in Bootstrap mode this file path becomes
no longer used for bootstrapping OpenCore.

Note 1: Some types of firmware may have faulty NVRAM, no boot option support, or other incompatibilities.
While unlikely, the use of this option may even cause boot failures. This option should be used without any
warranty exclusively on the boards known to be compatible. Check for some known issues with Haswell and
other boards.

Note 2: Be aware that while NVRAM reset executed from OpenCore should not erase the boot option created in
Bootstrap, executing NVRAM reset prior to loading OpenCore will remove it. For significant implementation
updates (e.g. in OpenCore 0.6.4) make sure to perform NVRAM reset with Bootstrap disabled before reenabling.

7. DmgLoading
Type: plist string
Failsafe: Signed
Description: Define Disk Image (DMG) loading policy used for macOS Recovery.

Valid values:

• Disabled — loading DMG images will fail. Disabled policy will still let macOS Recovery to load in most
cases as there usually are boot.efi files compatible with Apple Secure Boot. Manually downloaded DMG
images stored in com.apple.recovery.boot directories will not load, however.

• Signed — only Apple-signed DMG images will load. Due to Apple Secure Boot design Signed policy will
let any Apple-signed macOS Recovery to load regardless of Apple Secure Boot state, which may not always
be desired.

• Any — any DMG images will mount as normal filesystems. Any policy is strongly not recommended and will
cause a boot failure when Apple Secure Boot is activated.

8. EnablePassword
Type: plist boolean
Failsafe: false
Description: Enable password protection to allow sensitive operations.

Password protection ensures that sensitive operations such as booting a non-default operating system (e.g. macOS
recovery or a tool), resetting NVRAM storage, trying to boot into a non-default mode (e.g. verbose mode or safe
mode) are not allowed without explicit user authentication by a custom password. Currently password and salt
are hashed with 5000000 iterations of SHA-512.

Note: This functionality is currently in development and is not ready for daily usage.

9. ExposeSensitiveData
Type: plist integer
Failsafe: 0x6
Description: Sensitive data exposure bitmask (sum) to operating system.

• 0x01 — Expose printable booter path as an UEFI variable.
• 0x02 — Expose OpenCore version as an UEFI variable.
• 0x04 — Expose OpenCore version in boot picker menu title.
• 0x08 — Expose OEM information as a set of UEFI variables.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

45

Warning: This feature is very dangerous as it passes unprotected data to firmware variable services. Use it only
when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacyOverwrite
Type: plist boolean
Failsafe: false
Description: Permits overwriting firmware variables from nvram.plist.

Note: Only variables accessible from the operating system will be overwritten.

5. LegacySchema
Type: plist dict
Description: Allows setting select NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.

* value can be used to accept all variables for select GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args
or csr-active-config, as this can bypass SIP.

6. WriteFlash
Type: plist boolean
Failsafe: false
Description: Enables writing to flash memory for all added variables.

Note: It is recommended to have this value enabled on most types of firmware but it is left configurable for
firmware that may have issues with NVRAM variable storage garbage collection or similar.

To read NVRAM variable value from macOS, nvram could be used by concatenating GUID and name variables separated
by a : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables.

9.3 Mandatory Variables
Warning: These variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Using
PlatformInfo is the recommend

::::::::::::
recommended

:
way of setting these variables.

The following variables are mandatory for macOS functioning:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables.

:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB
BoardSerialNumber. Present on newer Macs (2013+ at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM
Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

9.4 Recommended Variables
The following variables are recommended for faster startup or other improvements:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:csr-active-config
32-bit System Integrity Protection bitmask. Declared in XNU source code in csr.h.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures
Combined FirmwareFeatures and ExtendedFirmwareFeatures. Present on newer Macs to avoid extra parsing
of SMBIOS tables.

:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask
Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

52

https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0
https://opensource.apple.com/source/xnu/xnu-4570.71.2/bsd/sys/csr.h.auto.html

6. UpdateSMBIOSMode
Type: plist string
Failsafe: Create
Description: Update SMBIOS fields approach:

• TryOverwrite — Overwrite if new size is <= than the page-aligned original and there are no issues with
legacy region unlock. Create otherwise. Has issues on some types of firmware.

• Create — Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without
any fallbacks.

• Overwrite — Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size.
Abort with unspecified state otherwise.

• Custom —Write SMBIOS tables (gEfiSmbios(3)TableGuid) to gOcCustomSmbios(3)TableGuid to workaround
firmware overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires patch-
ing AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" - "EB9D2D35"
(in ASCII), done automatically by CustomSMBIOSGuid quirk.

Note: A side effect of using Custom approach is making SMBIOS updates exclusive to macOS, avoiding a collision
with existing Windows activation and custom OEM software but potentially breaking Apple-specific tools.

7.
:::::::::::::::::::
UseRawUuidEncoding
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

::::
Use

::::
raw

::::::::
encoding

:::
for

:::::::::
SMBIOS

:::::::
UUIDs.

:

::::
Each

::::::
UUID

:::::::::::::::::::::::::::::::::::::::
AABBCCDD-EEFF-GGHH-IIJJ-KKLLMMNNOOPP

::
is

:::::::::
essentially

::
a
::::::::::::
hexadecimal

:::::::
16-byte

::::::::
number.

::
It

::::
can

:::
be

:::::::
encoded

::
in

::::
two

::::::
ways:

•
:::
Big

::::::::
Endian

::
—

:::
by

::::::
writing

:::
all

:::
the

:::::
bytes

:::
as

::::
they

:::
are

:::::::
without

:::::::
making

::::
any

:::::
order

:::::::
changes

:
(
:::
{AA

::::
BB

:::
CC

:::
DD

:::
EE

:::
FF

::
GG

:::
HH

:::
II

::::
JJ

:::
KK

:::
LL

:::
MM

:::
NN

:::
OO

:::::
PP}

:
).

:::::
This

:::::::
method

::
is

::::
also

::::::
known

:::
as RFC 4122

::::::::
encoding

:::
or

:::
Raw

::::::::
encoding.

:

•
::::::
Little

::::::::
Endian

::
—

:::
by

:::::::::::
interpreting

::::
the

:::::
bytes

::
as

::::::::
numbers

::::
and

::::::
using

:::::
Little

:::::::
Endian

:::::
byte

:::::::::::::
representation

:
(
:::
{DD

::
CC

:::
BB

:::
AA

::::
FF

:::
EE

:::
HH

:::
GG

:::
II

:::
JJ

:::
KK

::::
LL

:::
MM

:::
NN

:::
OO

::::
PP}

::
).

::::::::
SMBIOS

:::::::::::
specification

::::
did

:::
not

:::::::::
explicitly

::::::
specify

::::
the

::::::::
encoding

:::::::
format

:::
for

:::
the

::::::
UUID

:::
up

:::
to

::::::::
SMBIOS

::::
2.6,

::::::
where

::
it

:::::
stated

:::::
that

:::::::
Little

:::::::
Endian

:::::::
encoding

:::::
shall

:::
be

:::::
used.

:::::
This

:::
led

::
to

::::
the

::::::::
confusion

:::
in

::::
both

:::::::::
firmware

:::::::::::::::
implementations

:::
and

:::::::
system

::::::::
software

::
as

::::::::
different

:::::::
vendors

:::::
used

::::::::
different

:::::::::
encodings

:::::
prior

::
to

:::::
that.

:

•
:::::
Apple

::::
uses

::::
Big

::::::::
Endian

::::::
format

::::::::::
everywhere

::::
but

::
it
:::::::
ignores

::::::::
SMBIOS

::::::
UUID

:::::::
within

:::::::
macOS.

:

•
:::::::::
dmidecode

::::
uses

::::
Big

:::::::
Endian

::::::
format

:::
for

:::::::::
SMBIOS

:::::
2.5.x

:::
or

:::::
lower

:::::
and

:::::::
Little

:::::::
Endian

::
for

::::
2.6

::::
and

:::::::
newer.

:::::::::::
Acidanthera dmidecode

:::::
prints

:::
all

::::
the

:::::
three.

:

•
::::::::
Windows

::::
uses

:::::::
Little

:::::::
Endian

::::::
format

:::::::::::
everywhere,

:::
but

::
it
:::::
only

::::::
affects

:::
the

::::::
visual

:::::::::::::
representation

::
of

:::
the

:::::::
values.

:::::::::
OpenCore

::::::
always

::::
sets

::
a
::::::
recent

:::::::::
SMBIOS

:::::::
version

:::::::::
(currently

::::
3.2)

::::::
when

::::::::::
generating

:::
the

:::::::::
modified

:::::
DMI

::::::
tables.

:::
If

:::::::::::::::::::
UseRawUuidEncoding

:
is

::::::::
enabled,

:::::
then

::::
Big

:::::::
Endian

::::::
format

::
is
:::::
used

:::
to

:::::
store

::::
the

:::::::::::
SystemUUID

::::
data.

:::::::::::
Otherwise

::::::
Little

::::::::
Endian

::
is

:::::
used.

:

::::
Note

:
:
:::::
Since

:::::::
UUIDs

::::
used

::
in

:::::::::
DataHub

::::
and

::::::::
NVRAM

:::
are

::::
not

::::::::::::
standardised

:::
and

::::
are

:::::
added

:::
by

::::::
Apple,

::::
this

::::::::::
preference

::::
does

:::
not

::::::
affect

:::::
them.

:::::::
Unlike

::::::::
SMBIOS

:::::
they

:::
are

:::::::
always

::::::
stored

::
in

:::
the

::::
Big

::::::::
Endian

:::::::
format.

:

8. Generic
Type: plist dictionary
Description: Update all fields .

::
in

::::::::::
Automatic

:::::
mode.

:

::::
Note

:
:
:
This section is read only

::::::
ignored

::::
but

::::
may

::::
not

::
be

::::::::
removed

:
when Automatic is active

::::::
false.

9. DataHub
Type: plist dictionary
Optional: When Automatic is trueDescription: Update Data Hub fields .

::
in

:::::
non-

:::::::::
Automatic

:::::
mode.

:

::::
Note

:
:
:
This section is read only

::::::
ignored

::::
and

::::
may

:::
be

::::::::
removed

:
when Automatic is not active

::::
true.

10. Memory
Type: plist dictionary
Optional: When CustomMemory is falseDescription: Define custom memory configuration.

57

https://tools.ietf.org/html/rfc4122
https://github.com/acidanthera/dmidecode

::::
Note

:
:
::::
This

:::::::
section

::
is

:::::::
ignored

::::
and

::::
may

:::
be

::::::::
removed

:::::
when

::::::::::::::
CustomMemory

::
is

::::::
false.

:

11. PlatformNVRAM
Type: plist dictionary
Optional: When Automatic is trueDescription: Update platform NVRAM fields .

::
in

::::
non-

::::::::::
Automatic

::::::
mode.

:

::::
Note

:
:
:
This section is read only

::::::
ignored

::::
and

::::
may

:::
be

::::::::
removed

:
when Automatic is not active

::::
true.

12. SMBIOS
Type: plist dictionary
Optional: When Automatic is trueDescription: Update SMBIOS fields .

::
in

:::::
non-

:::::::::
Automatic

:::::
mode.

:

::::
Note

:
:
:
This section is read only

::::::
ignored

::::
and

::::
may

:::
be

::::::::
removed

:
when Automatic is not active

::::
true.

10.2 Generic Properties
1. SpoofVendor

Type: plist boolean
Failsafe: false
Description: Sets SMBIOS vendor fields to Acidanthera.

It is dangerous to use Apple in SMBIOS vendor fields for reasons given in SystemManufacturer description.
However, certain firmware may not provide valid values otherwise, which could break some software.

2. AdviseWindows
Type: plist boolean
Failsafe: false
Description: Forces Windows support in FirmwareFeatures.

Added bits to FirmwareFeatures:

• FW_FEATURE_SUPPORTS_CSM_LEGACY_MODE (0x1) - Without this bit it is not possible to reboot to Windows
installed on a drive with EFI partition being not the first partition on the disk.

• FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) - Without this bit it is not possible to reboot to
Windows installed on a drive with EFI partition being the first partition on the disk.

3.
:::::::::::::::
MaxBIOSVersion
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

::::
Sets

::::::::::::
BIOSVersion

::
to

:::::::::::::::::::::
9999.999.999.999.999

:
,
::::::::::::
recommended

:::
for

::::::
legacy

:::::
Macs

:::::
when

:::::
using

::::::::::
Automatic

:::::::::::
PlatformInfo

:::
to

:::::
avoid

:::::
BIOS

::::::::
updates

::
in

::::::::::
unofficially

::::::::::
supported

:::::::
macOS

::::::::
versions.

:

4. SystemMemoryStatus
Type: plist string
Failsafe: Auto
Description: Indicates whether system memory is upgradable in PlatformFeature. This controls the visibility
of the Memory tab in About This Mac.

Valid values:

• Auto — use the original PlatformFeature value.
• Upgradable — explicitly unset PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY (0x2) in PlatformFeature.
• Soldered — explicitly set PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY (0x2) in PlatformFeature.

Note: On certain Mac models (namely MacBookPro10,x and any MacBookAir), SPMemoryReporter.spreporter
will ignore PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY and assume that system memory is non-upgradable.

5. ProcessorType
Type: plist integer
Failsafe: 0 (Automatic)
Description: Refer to SMBIOS ProcessorType.

6. SystemProductName
Type: plist string

58

Failsafe: MacPro6,1
:::::
OEM

::::::::
specified

:::
or

:::
not

::::::::
installed

Description: Refer to SMBIOS SystemProductName.

7. SystemSerialNumber
Type: plist string
Failsafe: OPENCORE_SN1

:::::
OEM

::::::::
specified

:::
or

:::
not

::::::::
installed

Description: Refer to SMBIOS SystemSerialNumber.

8. SystemUUID
Type: plist string, GUID
Failsafe: OEM specified

::
or

::::
not

::::::::
installed

Description: Refer to SMBIOS SystemUUID.

9. MLB
Type: plist string
Failsafe: OPENCORE_MLB_SN11

::::
OEM

:::::::::
specified

::
or

::::
not

::::::::
installed

Description: Refer to SMBIOS BoardSerialNumber.

10. ROM
Type: plist data, 6 bytes
Failsafe: all zero

:::::
OEM

::::::::
specified

::
or

::::
not

::::::::
installed

Description: Refer to 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM.

10.3 DataHub Properties
1. PlatformName

Type: plist string
Failsafe: Not installed
Description: Sets name in gEfiMiscSubClassGuid. Value found on Macs is platform in ASCII.

2. SystemProductName
Type: plist string
Failsafe: Not installed
Description: Sets Model in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemProductName
in Unicode.

3. SystemSerialNumber
Type: plist string
Failsafe: Not installed
Description: Sets SystemSerialNumber in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS
SystemSerialNumber in Unicode.

4. SystemUUID
Type: plist string, GUID
Failsafe: Not installed
Description: Sets system-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemUUID
(with swapped byte order).

5. BoardProduct
Type: plist string
Failsafe: Not installed
Description: Sets board-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS BoardProduct
in ASCII.

6. BoardRevision
Type: plist data, 1 byte
Failsafe: 0
Description: Sets board-rev in gEfiMiscSubClassGuid. Value found on Macs seems to correspond to internal
board revision (e.g. 01).

7. StartupPowerEvents
Type: plist integer, 64-bit
Failsafe: 0

59

11 UEFI

11.1 Introduction
UEFI (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITool and supplementary
utilities can be used.

11.2 Drivers
Depending on the firmware a different set of drivers may be required. Loading an incompatible driver may lead the
system to unbootable state or even cause permanent firmware damage. Some of the known drivers are listed below:

68

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases

make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc
build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

11.3 Tools and Applications
Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below. While some
tools can be launched from within OpenCore, see more details in the Tools subsection of the configuration, most should
be run separately either directly or from Shell.

To boot into OpenShell or any other tool directly save OpenShell.efi under the name of EFI\BOOT\BOOTX64.EFI on
a FAT32 partition. In general it is unimportant whether the partition scheme is GPT or MBR.

While the previous approach works both on Macs and other computers, an alternative Mac-only approach to bless the
tool on an HFS+ or APFS volume:

sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
--folder /Volumes/VOLNAME/DIR/ --setBoot

Listing 3: Blessing tool

Note 1 : /System/Library/CoreServices/BridgeVersion.bin should be copied to /Volumes/VOLNAME/DIR.
Note 2 : To be able to use bless disabling System Integrity Protection is necessary.
Note 3 : To be able to boot Secure Boot might be disabled if present.

Some of the known tools are listed below (builtin tools are marked with *):

BootKicker* Enter Apple BootPicker menu (exclusive for Macs with compatible GPUs).
ChipTune* Test BeepGen protocol and generate audio signals of different style and length.
CleanNvram* Reset NVRAM alternative bundled as a standalone tool.
GopStop* Test GraphicsOutput protocol with a simple scenario.
* Parse and
dump High
Definition Audio
codec information
(requires AudioDxe).
KeyTester*

Test keyboard input in SimpleText mode.

MemTest86 Memory testing utility.
OpenControl* Unlock and lock back NVRAM protection for other tools to be able to get full NVRAM

access when launching from OpenCore.
OpenShell* OpenCore-configured UEFI Shell for compatibility with a broad range of firmware.
PavpProvision Perform EPID provisioning (requires certificate data configuration).
ResetSystem* Utility to perform system reset. Takes reset type as an argument: ColdReset, Firmware,

Shutdown, WarmReset. Defaults to ColdReset.
RtcRw* Utility to read and write RTC (CMOS) memory.
VerifyMsrE2* Check CFG Lock (MSR 0xE2 write protection) consistency across all cores.

11.4 OpenCanopy
OpenCanopy is a graphical OpenCore user interface that runs in External PickerMode and relies on OpenCorePkg
OcBootManagementLib similar to the builtin text interface.

OpenCanopy requires graphical resources located in Resources directory to run. Sample resources (fonts and images)
can be found in OcBinaryData repository. Customised icons can be found over the internet (e.g. here or there).

OpenCanopy provides full support for PickerAttributes and offers a configurable builtin icon set. The default chosen
icon set depends on the DefaultBackgroundColor variable value. For Light Gray Old icon set will be used, for other
colours — the one without a prefix.

Predefined icons are put to \EFI\OC\Resources\Image directory. Full list of supported icons (in .icns format) is
provided below. Missing optional icons will use the closest available icon. External entries will use Ext-prefixed icon if
available (e.g. OldExtHardDrive.icns).

70

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://support.apple.com/HT208330
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg/tree/master/Application/GopStop
https://github.com/acidanthera/OpenCorePkg
https://www.memtest86.com
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
http://github.com/tianocore/edk2
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/blackosx/OpenCanopyIcons
https://applelife.ru/threads/kastomizacija-opencanopy.2945020/

::::
Note

:
:
::
In

::::
the

::::::::
following

:::
all

:::::::::::
dimensions

:::
are

::::::::::
normative

:::
for

:::
the

:::
1x

:::::::
scaling

::::
level

::::
and

:::::
shall

:::
be

::::::
scaled

::::::::::
accordingly

:::
for

::::::
other

:::::
levels.

:

• Cursor — Mouse cursor (mandatory
:
,
:::
up

::
to

::::::::
144x144).

• Selected — Selected item (mandatory
:
,
::::::::
144x144).

• Selector — Selecting item (mandatory
:
,
::
up

:::
to

:::::::
144x40).

•
::::
Left

::
—

::::::::
Scrolling

::::
left

:::::::::::
(mandatory,

:::::::
40x40).

:

•
:::::
Right

::
—

::::::::
Scrolling

:::::
right

:::::::::::
(mandatory,

:::::::
40x40).

:

• HardDrive — Generic OS (mandatory,
::::::::
128x128).

•
:::::::::::
Background

::
—

::::::::
Centred

:::::::::::
background

::::::
image.

:

• Apple — Apple OS
::::::::
(128x128).

• AppleRecv — Apple Recovery OS
::::::::
(128x128).

• AppleTM — Apple Time Machine
::::::::
(128x128).

• Windows — Windows
:::::::::
(128x128).

• Other — Custom entry (see Entries,
::::::::
128x128).

• ResetNVRAM — Reset NVRAM system action or tool
:::::::::
(128x128).

• Shell — Entry with UEFI Shell name (
:::
for e.g. OpenShell

::::::::
(128x128).

• Tool — Any other tool
:::::::::
(128x128).

Predefined labels are put to \EFI\OC\Resources\Label directory. Each label has .lbl or .l2x suffix to represent the
scaling level. Full list of labels is provided below. All labels are mandatory.

• EFIBoot — Generic OS.
• Apple — Apple OS.
• AppleRecv — Apple Recovery OS.
• AppleTM — Apple Time Machine.
• Windows — Windows.
• Other — Custom entry (see Entries).
• ResetNVRAM — Reset NVRAM system action or tool.
• Shell — Entry with UEFI Shell name (e.g. OpenShell).
• Tool — Any other tool.

::::
Note

:
:
:::
All

::::::
labels

:::::
must

::::
have

::
a
::::::
height

::
of

:::::::
exactly

:::
12

:::
px.

::::::
There

::
is
:::
no

:::::
limit

:::
for

:::::
their

::::::
width.

:

Label and icon generation can be performed with bundled utilities: disklabel and icnspack. Please refer to sample
data for the details about the dimensions. Font is Helvetica 12 pt times scale factor.

Font format corresponds to AngelCode binary BMF. While there are many utilities to generate font files, currently it is
recommended to use dpFontBaker to generate bitmap font (using CoreText produces best results) and fonverter to
export it to binary format.

11.5 OpenRuntime
OpenRuntime is an OpenCore plugin implementing OC_FIRMWARE_RUNTIME protocol. This protocol implements multiple
features required for OpenCore that are otherwise not possible to implement in OpenCore itself as they are needed to
work in runtime, i.e. during operating system functioning. Feature highlights:

• NVRAM namespaces, allowing to isolate operating systems from accessing select variables (e.g. RequestBootVarRouting
or ProtectSecureBoot).

• Read-only and write-only NVRAM variables, enhancing the security of OpenCore, Lilu, and Lilu plugins, such as
VirtualSMC, which implements AuthRestart support.

• NVRAM isolation, allowing to protect all variables from being written from an untrusted operating system (e.g.
DisableVariableWrite).

• UEFI Runtime Services memory protection management to workaround read-only mapping (e.g. EnableWriteUnprotector).

11.6 Properties
1. APFS

Type: plist dict

71

https://www.angelcode.com/products/bmfont
https://github.com/danpla/dpfontbaker
https://github.com/danpla/dpfontbaker/pull/1
https://github.com/usr-sse2/fonverter

4. AudioSupport
Type: plist boolean
Failsafe: false
Description: Activate audio support by connecting to a backend driver.

Enabling this setting routes audio playback from builtin protocols to a dedicated audio port (AudioOut) of the
specified codec (AudioCodec) located on the audio controller (AudioDevice).

5. MinimumVolume
Type: plist integer
Failsafe: 0
Description: Minimal heard volume level from 0 to 100.

Screen reader will use this volume level, when the calculated volume level is less than MinimumVolume. Boot
chime sound will not play if the calculated volume level is less than MinimumVolume.

6. PlayChime
Type: plist string
Failsafe: empty string

::::
Auto

Description: Play chime sound at startup.

Enabling this setting plays boot chime through builtin audio support. Volume level is determined by MinimumVolume
and VolumeAmplifier settings and SystemAudioVolume NVRAM variable. Possible values include:

• Auto — Enables chime when StartupMute NVRAM variable is not present or set to 00.
• Enabled — Enables chime unconditionally.
• Disabled — Disables chime unconditionally.

Note: Enabled can be used in separate from StartupMute NVRAM variable to avoid conflicts when the firmware
is able to play boot chime.

7. SetupDelay
Type: plist integer
Failsafe: 0
Description: Audio codec reconfiguration delay in microseconds.

Some codecs require a vendor-specific delay after the reconfiguration (e.g. volume setting). This option makes it
configurable. In general the necessary delay may be as long as 0.5 seconds.

8. VolumeAmplifier
Type: plist integer
Failsafe: 0
Description: Multiplication coefficient for system volume to raw volume linear translation from 0 to 1000.

Volume level range read from SystemAudioVolume varies depending on the codec. To transform read value in
[0, 127] range into raw volume range [0, 100] the read value is scaled to VolumeAmplifier percents:

RawV olume = MIN(SystemAudioV olume ∗ V olumeAmplifier

100 , 100)

Note: the transformation used in macOS is not linear, but it is very close and this nuance is thus ignored.

11.9 Input Properties
1. KeyFiltering

Type: plist boolean
Failsafe: false
Description: Enable keyboard input sanity checking.

Apparently some boards such as the GA Z77P-D3 may return uninitialised data in EFI_INPUT_KEY with all input
protocols. This option discards keys that are neither ASCII, nor are defined in the UEFI specification (see tables
107 and 108 in version 2.8).

2. KeyForgetThreshold
Type: plist integer

75

Failsafe: 0
Description: Remove key unless it was submitted during this timeout in milliseconds.

AppleKeyMapAggregator protocol is supposed to contain a fixed length buffer of currently pressed keys. However,
the majority of the drivers only report key presses as interrupts and pressing and holding the key on the keyboard
results in subsequent submissions of this key with some defined time interval. As a result we use a timeout to
remove once pressed keys from the buffer once the timeout expires and no new submission of this key happened.

This option allows to set this timeout based on the platform. The recommended value that works on the majority
of the platforms is 5 milliseconds. For reference, holding one key on VMware will repeat it roughly every 2
milliseconds and the same value for APTIO V is 3-4 milliseconds. Thus it is possible to set a slightly lower value
on faster platforms and slightly higher value on slower platforms for more responsive input.

Note: Some platforms may require different values, higher or lower. For example, when detecting key misses in
OpenCanopy try increasing this value (e.g. to 10), and when detecting key stall, try decreasing this value. Since
every platform is different it may be reasonable to check every value from 1 to 25.

3. KeyMergeThreshold
Type: plist integer
Failsafe: 0
Description: Assume simultaneous combination for keys submitted within this timeout in milliseconds.

Similarly to KeyForgetThreshold, this option works around the sequential nature of key submission. To be able
to recognise simultaneously pressed keys in the situation when all keys arrive sequentially, we are required to set
a timeout within which we assume the keys were pressed together.

Holding multiple keys results in reports every 2 and 1 milliseconds for VMware and APTIO V respectively.
Pressing keys one after the other results in delays of at least 6 and 10 milliseconds for the same platforms. The
recommended value for this option is 2 milliseconds, but it may be decreased for faster platforms and increased
for slower.

4. KeySupport
Type: plist boolean
Failsafe: false
Description: Enable internal keyboard input translation to AppleKeyMapAggregator protocol.

This option activates the internal keyboard interceptor driver, based on AppleGenericInput aka (AptioInputFix),
to fill AppleKeyMapAggregator database for input functioning. In case a separate driver is used, such as
OpenUsbKbDxe, this option should never be enabled.

5. KeySupportMode
Type: plist string
Failsafe: empty string

::::
Auto

Description: Set internal keyboard input translation to AppleKeyMapAggregator protocol mode.

• Auto — Performs automatic choice as available with the following preference: AMI, V2, V1.
• V1 — Uses UEFI standard legacy input protocol EFI_SIMPLE_TEXT_INPUT_PROTOCOL.
• V2 — Uses UEFI standard modern input protocol EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.
• AMI — Uses APTIO input protocol AMI_EFIKEYCODE_PROTOCOL.

Note: Currently V1, V2, and AMI unlike Auto only do filtering of the particular specified protocol. This may
change in the future versions.

6. KeySwap
Type: plist boolean
Failsafe: false
Description: Swap Command and Option keys during submission.

This option may be useful for keyboard layouts with Option key situated to the right of Command key.

7. PointerSupport
Type: plist boolean
Failsafe: false
Description: Enable internal pointer driver.

76

This option implements standard UEFI pointer protocol (EFI_SIMPLE_POINTER_PROTOCOL) through select OEM
protocols. The option may be useful on Z87 ASUS boards, where EFI_SIMPLE_POINTER_PROTOCOL is broken.

8. PointerSupportMode
Type: plist string
Failsafe: empty string
Description: Set OEM protocol used for internal pointer driver.

Currently the only supported variant is ASUS, using specialised protocol available on select Z87 and Z97 ASUS
boards. More details can be found in LongSoft/UefiTool#116.

::::
The

:::::
value

::
of

::::
this

::::::::
property

:::::::
cannot

:::
be

::::::
empty

::
if

:::::::::::::::
PointerSupport

::
is

::::::::
enabled.

9. TimerResolution
Type: plist integer
Failsafe: 0
Description: Set architecture timer resolution.

This option allows to update firmware architecture timer period with the specified value in 100 nanosecond units.
Setting a lower value generally improves performance and responsiveness of the interface and input handling.

The recommended value is 50000 (5 milliseconds) or slightly higher. Select ASUS Z87 boards use 60000 for the
interface. Apple boards use 100000. In case of issues, this option can be left as 0.

11.10 Output Properties
1. TextRenderer

Type: plist string
Failsafe: BuiltinGraphics
Description: Chooses renderer for text going through standard console output.

Currently two renderers are supported: Builtin and System. System renderer uses firmware services for text
rendering. Builtin bypassing firmware services and performs text rendering on its own. Different renderers
support a different set of options. It is recommended to use Builtin renderer, as it supports HiDPI mode and
uses full screen resolution.

UEFI firmware generally supports ConsoleControl with two rendering modes: Graphics and Text. Some types
of firmware do not support ConsoleControl and rendering modes. OpenCore and macOS expect text to only be
shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by UEFI specification,
exact behaviour varies.

Valid values are combinations of text renderer and rendering mode:

• BuiltinGraphics — Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.
• BuiltinText — Switch to Text mode and use Builtin renderer with custom ConsoleControl.
• SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.
• SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.
• SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms it is necessary to enable
ProvideConsoleGop, set Resolution to Max. BuiltinText variant is an alternative BuiltinGraphics for
some very old and buggy laptop firmware, which can only draw in Text mode.

The use of System protocols is more complicated. In general the preferred setting is SystemGraphics or
SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, namely MacPro5,1, may have broken console output with newer GPUs, and thus only
BuiltinGraphics may work for them.

2. ConsoleMode
Type: plist string
Failsafe: Empty string
Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string.

77

https://github.com/LongSoft/UEFITool/pull/116

This protocol replaces legacy VirtualSmc UEFI driver, and is compatible with any SMC kernel extension.
However, in case FakeSMC kernel extension is used, manual NVRAM key variable addition may be needed.

12. AppleUserInterfaceTheme
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple User Interface Theme protocol with a builtin version.

13. DataHub
Type: plist boolean
Failsafe: false
Description: Reinstalls Data Hub protocol with a builtin version. This will delete all previous properties if the
protocol was already installed.

14. DeviceProperties
Type: plist boolean
Failsafe: false
Description: Reinstalls Device Property protocol with a builtin version. This will delete all previous properties
if it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

15. FirmwareVolume
Type: plist boolean
Failsafe: false
Description: Forcibly wraps Firmware Volume protocols or installs new to support custom cursor images for
File Vault 2. Should be set to true to ensure File Vault 2 compatibility on everything but VMs and legacy Macs.

Note: Several virtual machines including VMware may have corrupted cursor image in HiDPI mode and thus
may also require this setting to be enabled.

16. HashServices
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls Hash Services protocols with builtin versions. Should be set to true to ensure
File Vault 2 compatibility on platforms providing broken SHA-1 hashing. Can be diagnosed by invalid cursor size
with UIScale set to 02, in general platforms prior to APTIO V (Haswell and older) are affected.

17. OSInfo
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls OS Info protocol with builtin versions. This protocol is generally used to receive
notifications from macOS bootloader, by the firmware or by other applications.

18. UnicodeCollation
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls unicode collation services with builtin version. Should be set to true to ensure
UEFI Shell compatibility on platforms providing broken unicode collation. In general legacy Insyde and APTIO
platforms on Ivy Bridge and earlier are affected.

11.12 Quirks Properties
1.

::::::::::::::::::::::
DisableSecurityPolicy
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::::
Disable

:::::::::
platform

:::::::
security

::::::
policy.

:

::::
Note

:
:
::::
This

:::::::
setting

:::::::
disables

:::::::
various

::::::::
security

:::::::
features

::
of

::::
the

::::::::
firmware,

:::::::::
defeating

:::
the

::::::::
purpose

::
of

::::
any

::::
kind

::
of

:::::::
Secure

:::::
Boot.

:::
Do

:::::
NOT

:::::::
enable

:
if
::::
you

::::
use

:::::
UEFI

:::::::
Secure

:::::
Boot.

:

2. ExitBootServicesDelay
Type: plist integer
Failsafe: 0
Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

81

12 Troubleshooting

12.1 Legacy Apple OS
Older operating systems may be more complicated to install, but sometimes can be necessary to use for all kinds of
reasons. While a compatible board identifier and CPUID are the obvious requirements for proper functioning of an
older operating system, there are many other less obvious things to consider. This section tries to cover a common set
of issues relevant to installing older macOS operating systems.

While newer operating systems can be downloaded over the internet, older operating systems did not have installation
media for every minor release, so to get a compatible distribution one may have to download a device-specific image
and mod it if necessary. To get the list of the bundled device-specific builds for legacy operating systems one can visit
this archived Apple Support article. Since it is not always accurate, the latest versions are listed below.

12.1.1 macOS 10.8 and 10.9

• Disk images on these systems use Apple Partitioning Scheme and will require the proprietary
::::::
require

:
PartitionDxe

:::::::::::::::::
OpenPartitionDxe

driver to run DMG recovery and installation
::::::::
(included

::
in

::::::::::
OpenDuet). It is possible to set DmgLoading to Disabled

to run the recovery without DMG loading avoiding the need for PartitionDxe
:::::::::::::::::
OpenPartitionDxe.

• Cached kernel images often do not contain family drivers for networking (IONetworkingFamily) or audio
(IOAudioFamily) requiring the use of Force loading in order to inject networking or audio drivers.

12.1.2 macOS 10.7

• All previous issues apply.

• SSSE3 support (not to be confused with SSE3 support) is a hard requirement for macOS 10.7 kernel.

• Many kexts, including Lilu when 32-bit kernel is used and a lot of Lilu plugins, are unsupported on macOS 10.7
and older as they require newer kernel APIs, which are not part of the macOS 10.7 SDK.

• Prior to macOS 10.8 KASLR sliding is not supported, which will result in memory allocation failures on firmware
that utilise lower memory for their own purposes. Refer to acidanthera/bugtracker#1125 for tracking.

12.1.3 macOS 10.6

• All previous issues apply.

• SSSE3 support is a requirement for macOS 10.6 kernel with 64-bit userspace enabled. This limitation can mostly
be lifted by enabling the LegacyCommpage quirk.

• Last released installer images for macOS 10.6 are macOS 10.6.7 builds 10J3250 (for MacBookPro8,x) and
10J4139 (for iMac12,x), without Xcode). These images are limited to their target model identifiers and have no
-no_compat_check boot argument support. Modified images (with ACDT suffix) without model restrictions can
be found here (MEGA Mirror

:
), assuming macOS 10.6 is legally owned. Read DIGEST.txt for more details. Note

that these are the earliest tested versions of macOS 10.6 with OpenCore.

Model checking may also be erased by editing OSInstall.mpkg with e.g. Flat Package Editor by making Distribution
script to always return true in hwbeModelCheck function. Since updating the only file in the image and not corrupting
other files can be difficult and may cause slow booting due to kernel cache date changes, it is recommended to script
image rebuilding as shown below:

#!/bin/bash
Original.dmg is original image, OSInstall.mpkg is patched package
mkdir RO
hdiutil mount Original.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RO
cp RO/.DS_Store DS_STORE
hdiutil detach RO -force
rm -rf RO
hdiutil convert Original.dmg -format UDRW -o ReadWrite.dmg
mkdir RW
xattr -c OSInstall.mpkg

84

https://web.archive.org/web/20170705003629/https://support.apple.com/en-us/HT204319
https://github.com/acidanthera/bugtracker/issues/1125
https://archive.org/details/10.6.7-10j3250-disk-images
https://mega.nz/folder/z5YUhYTb#gA_IRY5KMuYpnNCg7kR3ug

hdiutil mount ReadWrite.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RW
cp OSInstall.mpkg RW/System/Installation/Packages/OSInstall.mpkg
killall Finder fseventsd
rm -rf RW/.fseventsd
cp DS_STORE RW/.DS_Store
hdiutil detach RW -force
rm -rf DS_STORE RW
hdiutil convert ReadWrite.dmg -format UDZO -o ReadOnly.dmg

12.1.4 macOS 10.5

• All previous issues apply.

• This macOS version does not support x86_64 kernel and requires i386 kernel extensions and patches.

• This macOS version uses the first (V1) version of prelinkedkernel, which has kext symbol tables corrupted
by the kext tools. This nuance renders prelinkedkernel kext injection impossible in OpenCore. Mkext kext
injection will still work without noticeable performance drain and will be chosen automatically when KernelCache
is set to Auto.

• Last released installer image for macOS 10.5 is macOS 10.5.7 build 9J3050 (for MacBookPro5,3). Unlike the
others, this image is not limited to the target model identifiers and can be used as is. The original 9J3050 image
can be found here

:
(MEGA Mirror

:
), assuming macOS 10.5 is legally owned. Read DIGEST.txt for more details.

Note that this is the earliest tested version of macOS 10.5 with OpenCore.

12.1.5 macOS 10.4

• All previous issues apply.

• This macOS version has a hard requirement to access all the optional packages on the second DVD disk installation
media, requiring either two disks or USB media installation.

• Last released installer images for macOS 10.4 are macOS 10.4.10 builds 8R4061a (for MacBookPro3,1) and 8R4088
(for iMac7,1)). These images are limited to their target model identifiers as on newer macOS versions. Modified
8R4088 images (with ACDT suffix) without model restrictions can be found here

:
(MEGA Mirror

:
), assuming

macOS 10.4 is legally owned. Read DIGEST.txt for more details. Note that these are the earliest tested versions
of macOS 10.4 with OpenCore.

12.2 UEFI Secure Boot
OpenCore is designed to provide a secure boot chain between firmware and operating system. On most x86 platforms
trusted loading is implemented via UEFI Secure Boot model. Not only OpenCore fully supports this model, but it
also extends its capabilities to ensure sealed configuration via vaulting and provide trusted loading to the operating
systems using custom verification, such as Apple Secure Boot. Proper secure boot chain requires several steps and
careful configuration of select settings as explained below:

1. Enable Apple Secure Boot by setting SecureBootModel to run macOS. Note, that not every macOS is compatible
with Apple Secure Boot and there are several other restrictions as explained in Apple Secure Boot section.

2. Disable DMG loading by setting DmgLoading to Disabled if users have concerns of loading old vulnerable DMG
recoveries. This is not required, but recommended. For the actual tradeoffs see the details in DMG loading
section.

3. Make sure that APFS JumpStart functionality restricts the loading of old vulnerable drivers by setting MinDate
and MinVersion to 0. More details are provided in APFS JumpStart section. An alternative is to install apfs.efi
driver manually.

4. Make sure that Force driver loading is not needed and all the operating systems are still bootable.

5. Make sure that ScanPolicy restricts loading from undesired devices. It is a good idea to prohibit all removable
drivers or unknown filesystems.

85

https://archive.org/details/10.5.7-9-j-3050
https://mega.nz/folder/inRBTarD#zanf7fUbviwz3WHBU5xpCg
https://archive.org/details/10.4.10-8-r-4088-acdt
https://mega.nz/folder/D3ASzLzA#7sjYXE2X09f6aGjol_C7dg
https://en.wikipedia.org/wiki/UEFI_Secure_Boot

6. Sign all the installed drivers and tools with the private key. Do not sign tools that provide administrative access
to the computer, such as UEFI Shell.

7. Vault the configuration as explained Vaulting section.

8. Sign all OpenCore binaries (BOOTX64.efi, BOOTIa32.efi, Bootstrap.efi, OpenCore.efi
:
,
:::::::
custom

:::::::::
launchers)

used on this system with the same private key.

9. Sign all third-party operating system (not made by Microsoft or Apple) bootloaders if needed. For Linux there is
an option to install Microsoft-signed Shim bootloader as explained on e.g. Debian Wiki.

10. Enable UEFI Secure Boot in firmware preferences and install the certificate with a private key. Details on how to
generate a certificate can be found in various articles, such as this one, and are out of the scope of this document.
If Windows is needed one will also need to add the Microsoft Windows Production CA 2011. To launch option
ROMs or to use signed Linux drivers, Microsoft UEFI Driver Signing CA will also be needed.

11. Password-protect changing firmware settings to ensure that UEFI Secure Boot cannot be disabled without the
user’s knowledge.

12.3 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFI installations as well as systems partially supporting UEFI
boot, such as Windows 7, might work with some extra precautions. Things to consider:

• MBR (Master Boot Record) installations are legacy and will not be supported.

• All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

• macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.

• Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID.
Be aware that it may be invalid on old firmware, i.e., not random. If there still are issues, consider using HWID
or KMS38 license or making the use Custom UpdateSMBIOSMode. Other nuances of Windows activation are out
of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases Windows support software
from Boot Camp is required. For simplicity of the download process or when configuring an already installed Windows
version a third-party utility, Brigadier, can be used successfully. Note, that 7-Zip may be downloaded and installed
prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. If there is a previous version of
Boot Camp installed it should be removed first by running msiexec /x BootCamp.msi command. BootCamp.msi file
is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, the rest may still have to be
addressed manually:

• To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUser.

• RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser (this is usually not needed).

• To access Apple filesystems such as HFS+ and APFS, separate software may need to be installed. Some of
the known utilities are: Apple HFS+ driver (hack for Windows 10), HFSExplorer, MacDrive, Paragon APFS,
Paragon HFS+, TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as
this often leads to irrecoverable data loss.

86

https://wiki.debian.org/SecureBoot
https://habr.com/en/post/273497
http://go.microsoft.com/fwlink/?LinkID=321192
http://go.microsoft.com/fwlink/?LinkId=321194
https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/post-24180079
http://www.catacombae.org/hfsexplorer

	Setup
	Directory Structure
	Installation and Upgrade
	Debugging

	Quirks Properties
	Properties
	Boot Properties
	Security Properties
	Mandatory Variables
	Recommended Variables
	Generic Properties
	DataHub Properties
	UEFI
	Introduction
	Drivers
	Tools and Applications
	OpenCanopy
	OpenRuntime
	Properties
	Input Properties
	Output Properties
	Quirks Properties

	Troubleshooting
	Legacy Apple OS
	UEFI Secure Boot
	Windows support

