OpenCore

Reference Manual (0.6.6.7)
[2021.02.28]

Copyright ©2018-2021 vit9696

1 Introduction

This document provides information on the OpenCore user configuration file format used to set up the correct functioning
of the macOS operating system. It is to be read as the official clarification of expected OpenCore behaviour. All
deviations, if found in published OpenCore releases, shall be considered to be documentation or implementation
bugs-issues which should be reported via the Acidanthera Bugtracker, An errata sheet is available in (OpenCorePkg
repositoryl.

This document is structured as a specification and is not meant to provide a step-by-step guide to configuring an
end-user Board Support Package (BSP). The intended audience of the document is anticipated to be programmers and
engineers with a basic understanding of macOS internals and UEFI functionality. For these reasons, this document is
available exclusively in English, and all other sources or translations of this document are unofficial and may contain
errors.

Third-party articles, utilities, books, and similar, may be more useful for a wider audience as they could provide
guide-like material. However, they are subject to their authors’ preferences, tastes, misinterpretations of this document,
and unavoidable obsolescence. In cases of using such sources, such as Dortania’s OpenCore Install Guide and [related
material, please refer back to this document on every decision made and re-evaluate potential consequences.

Please note that regardless of the sources used, users are required to fully understand every OpenCore configuration
option, and the principles behind them, before posting issues to the Acidanthera Bugtracker.

Note: Creating this document would not have been possible without the invaluable contributions from other people:
Andrey1970, Goldfish64, dakanji, PMheart, and several others, with the full list available in |OpenCorePkg history.

1.1 Generic Terms

e plist — Subset of ASCII Property List format written in XML, also know as XML plist format version
1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

o plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

e plist object — definite realisation of plist type, which may be interpreted as value.
o plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

o plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

o plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

e plist string — printable 7-bit ASCII string, conforms to string.

e plist data — base64-encoded blob, conforms to data.

e plist date — ISO-8601 date, conforms to date, unsupported.

o plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

e plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

e plist real — floating point number, conforms to real, unsupported.

o plist metadatamultidata — value cast to data by the implementation. Permits passing plist string, in
which case the result is represented by a null-terminated sequence of bytes (aka-C string), plist integer, in
which case the result is represented by 32-bit little endian sequence of bytes in two’s complement representation,
plist boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All
other types or larger integers invoke undefined behaviour.

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker
https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Errata/Errata.pdf
https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Errata/Errata.pdf
https://dortania.github.io
https://dortania.github.io/OpenCore-Install-Guide
https://dortania.github.io/getting-started
https://dortania.github.io/getting-started
https://github.com/acidanthera/bugtracker
https://github.com/acidanthera/OpenCorePkg/commits/master/Docs

2 Configuration

2.1 Configuration Terms

e 0C config — OpenCore Configuration file in plist format named config.plist. It has-to-provide-provides an
extensible way to configure OpenCore and is structured to be separated into multiple named sections situated i
under the root plist dictionary. These sections are-permitted-te-may have plist array or plist dictionary
types and are described in corresponding sections of this document.

e valid key — plist key object of OC config described in this document or its future revisions. Besides explicitly
described valid keys, keys starting with the # symbol (e.g. #Hello) are also considered valid keys and while
they behave as comments, effectively dlscardlng their valae;—whieh—is—values, they are still required to be a
valid-valid plist ebjectobjects. All other plist keys are not valid, and their presence yields—to-results in
undefined behaviour.

e valid value — valid plist object of OC config described in this document that matches all the additional
requirements in specific plist object deseription-descriptions if any.

e invalid value — valid plist object of OC config described in this document that is of other plist type,
does not conform to additional requirements found in specific plist object deseription-descriptions (e.g. value
range), or missing from the corresponding collection. Invalid waluevalues is-are read with or without an
error message as any possible value of this plist object in an undetermined manner (i.e. the values may
not be same across the reboots). Whilst reading an invalid value is equivalent to reading certain defined
valid wvaluevalues, applying incompatible valie-values to the host system may yield—-+to-result in undefined
behaviour.

e optional value —valid value of OC config described in this document that reads in a certain defined manner
provided in specific plist object description (instead of invalid value) when not present in 0C config. All
other cases of invalid value do still apply. Unless explicitly marked as optional value, any other value is
required to be present and reads to invalid value if missing.

e fatal behaviour — behaviour leading to boot termination. fmplementation—must-stop-Implementations shall
prevent the boot process from geing-anyfurther—until-next-host-system—bootcontinuing until the host system
is restarted. It is allewed-permitted, but not requiredte-perform-eold-reboot-or shew-any—warning-message, to

execute cold reboots or to show warning messages in such cases.
e undefined behaviour — behaviour not prescribed by this document. fmplementation-isallowed-to-Implementations

W\xtake any measures 1nclud1ngmbut not limited tow@wﬁbjatal behav1our &ssum&ﬂg%ﬂy
@W@MMWM&WWW
negatively impacting upon system integrity.

. o o

2.2 Configuration Processing

The 0C config file is guaranteed to be processed at least once if it=was-found. Depending on OpenCore bootstrapping
mechanism 1, the presence of multiple 0OC config files may lead to reading-the reading of any of them. Ne-It is permissible
for no 0C Config mayfile to be present on disk;in-which-ease-all-thevaluesread-. In such cases, if the implementation
WWMOHOW the rules of invalid waluevalues and optional waluevalues.

s—levels, and number of keys:

The 0C config hasfile has restrictions on size, nesting 5
e The OC config size-deesnot-exeeedile size shall not exceed $+632 MBs.
o The OC config hasno-more-thanfile shall not have more than 832 nesting levels.

. The 0C config has-up-te-file may have up to $638432,768 XML nodes {i—e—ene-within each plist object.
— One plist dictionary item is counted as a pair of nodes }within-each plist object

Reading malformed 0C config fileleadstofiles results in undefined behaviour. Examples of malformed OC config
eover-atleast—thefolowingeasesfiles include the the following:

o filesnon-eonformant+te-0C_config files that do not conform to p3is+tDTD PLIST 1.0.
e 0C config files with unsupported or non-conformant plist objects found in this document,_

o files—vielating-0C config files violating restrictions on size, nesting ;—and-key-amounttimitations-levels, and
number of keys.

It is recommended, but not required, to abort loading malformed 0C config and-files and to continue as if ne-an 0C
config %@w)wresent For forward compatibility, it is recommended, but not required, for the 1mplementat10n

to warn about the use of invalid values. Recommended-practice-of-
The recommended practice for interpreting invalid values is to conform to the following convention where applicable:

Type Value
plist string Empty string (<string></string>)
plist data Empty data (<data></data>)

plist integer | 0 (<integer>0</integer>)
plist boolean | False (<false/>)
plist tristate | False (<false/>)

2.3 Configuration Structure

The 0C config file is separated into subsections, as described in separate sections of this

document—ByLdefaﬂ}Fth%HetHeﬂ%eﬁa%}eﬂﬁyehmg—&ﬁdepHeﬂaﬂy and is designed so as to attempt not to enable
anything b default as Well as to rov1de kill sw1tches wrﬁkrwa an Enable property for plist dict entries —ngeneral

s-that represent optional plugins and

m

The file is structured to group related elements in subsections as follows:

e Add provides support for data addition. Existing data will not be overridden, and needs to be handled separately
with Delete if necessary.

e Delete provides support for data removal.

e Patch provides support for data modification.

e Quirks provides support for specific hacksworkarounds.

Root configuration entries consist of the following;:

o [ECPT]
o [Booter]

e [DeviceProperties|

o [Kernel

o [Misd

o [NVEAM

o [PIatformInfodl
o [UEET]

-Pos : ' 3 sing-Basic validation of an 0C config file is possible
%ocvalldate utlhty Please note +that-that the version of ocvalidate used must match the tsed-OpenCore

release and maynet—be-ableto-that nothwithstanding this, it may not detect all conﬁguratlon Haws—present—in—the
issues present in an 0C config file.

Note: i#To maintain s stem 1nte rlt roperties t icall

have redeﬁned values even When such redeﬁned values are not specified in the
ey . : S 15-0C config file. However, all properties must be
&Rb@iﬂymspemﬁed in the eeﬂﬁguﬁﬁeﬁm Wm

3 Setup

3.1 Directory Structure

ESP

BOOTx64.efi

ool

— OpenCore.efi
— config.plist

R

F1gure 1. Directory Structure

When directory boot is used, the directory structure used should follow the deseription-en-descriptions in the
figure. Available entries include:
e BOOTx64.efi or BOOTIa32.efi
Initial bootstrap 1oaders Wthh load OpenCore.efi. BOOTx64.efi is loaded by the firmware by default aceerding

, —ean—consistent with the UEFI S ec1ﬁcat10n However it may also be renamed
and put feeHn a custom locatlon to 5 ¢ 5 sine—allow OpenCore coexist

alongside operating systems, such as Windows, that use BO0OTx64.efi
files as their loaders. Refer to the LauncherOption property for more details.

e boot
Duet bootstrap loader, which initialises the UEFI environment on legacy BIOS firmware and loads OpenCore.efi
similarly to other bootstrap loaders. Medern-A modern Duet bootstrap loader will default to OpenCore.efi on
the same partition when present.
e ACPI
Directory used for storing supplemental ACPI information for the section.
e Drivers
Directory used for storing supplemental UEFI drivers for section.
e Kexts
Directory used for storing supplemental kernel information for section.
e Resources
Directory used for storing media resources +such as audio files for screen reader support. See
Properties|section for more details. This directory also contains image files for graphical user interface. See the
@] section for more details.

e Tools
Directory used for storing supplemental tools.
e OpenCore.efi
Main booter application responsible for operating system loading. The directory OpenCore.efi resides in is
called the root directory—Bydefaultroot—directory , which is set to EFI\OC —hewevei—whefkbyvggﬁ@g&
When launching OpenCore.efi directly or through a custom launcher however, other directories containing
OpenCore.efi ean-also-be-files are also supported.
e config.plist
0C Config.
e vault.plist
Hashes for all files potentially loadable by 0C Config.
e vault.sig
Signature for vault.plist.
e SysReport
Directory containing system reports generated by SysReport option.
e nvram.plist
OpenCore variable import file.
e opencore-YYYY-MM-DD-HHMMSS. txt
OpenCore log file.
e panic-YYYY-MM-DD-HHMMSS. txt
Kernel panic log file.

Note: It is not guaranteed that paths longer than 0C_STORAGE_SAFE_PATH_MAX (128 characters including the
O-terminator) will be accessible within OpenCore.

3.2 Installation and Upgrade

To install OpenCorerefleet, replicate the [Configuration Structure| described in the previous section en-a-in the EFI
volume of a GPT partition. While corresponding sections of this document de-provide some information regarding
external resources such as ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out
of the scope of this document. Information about kernel extensions may be found in a separate [Kext List| document
available in the OpenCore repository. Vaulting information is provided in the [Security Properties| section of this
document.

The 0C config +jus sts-file, as with any property list file, can be edited with any steek-textual
eﬁﬁeﬁﬁﬁo—m}—%wmspemahsed software may provide a better
experience. On macOS, the preferred GUI application is [Xcode. For a lightweight cross-platform and open-source
alternative, the ProperTree editor can be utilised.

For BIOS booting, a third-party UEFI environment provider will-have-to-be-used—is required and OpenDuetPkg is one

of-the kneown U -environment-providerssuch UEFI environment provider for legacy systems. To run OpenCore on
such a legacy system, OpenDuetPkg can be installed with a dedicated tool — BootInstall (bundled with OpenCore).

Third-party utilities can be used to perform this on systems other than macOS.

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/corpnewt/gibMacOS

For upgrade purposesrefer—to-, refer to the Differences.pdf document ;

affeeting-the-eonfisuration-which provides information about changes to the configuration (as compared to the previous
release;and-) as well as to the Changelog.md document —eontaining-the-(which contains a list of modifications across
all published updates).

3.3 Contribution

OpenCore can be complled as Mdm&ww EDK II package —SineeUDkK development—was-abandoned

' WEDK IT Stable —Gﬂﬁeﬁﬂye ackage. The currentl
supported EDK II release is hosted in jacidanthera/audk. >3 ' Required

atches for this package can be found in the Patches dlrectory

The only officially supported toolchain is XCODE5. Other toolchains might work ;—but are neither supported ;nor
recommended. Centribution-Contributions of clean patches is-are welcome. Please do follow EDK II C Codestyle.

To compile with XCODES5, besides Xcode|, ene-users should also install NASM and MTOC. The latest Xcode version
is recommended for use despite the toolchain name. Example-command-sequenee-maytook-An example command
sequence is as follows:

git clone --depth=1 https://github.com/acidanthera/audk UDK

cd UDK

git submodule update --init --recommend-shallow

git clone --depth=1 https://github.com/acidanthera/OpenCorePkg
source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be Sublime Text
with EasyClangComplete| plugin. Add .clang_complete file with similar content to the UDK root:

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/MdeModulePkg
-I/UefiPackages/MdeModulePkg/Include
-I/UefiPackages/MdeModulePkg/Include/X64
-I/UefiPackages/OpenCorePkg/Include/AMI
-I/UefiPackages/0OpenCorePkg/Include/Acidanthera
-I/UefiPackages/0OpenCorePkg/Include/Apple
-I/UefiPackages/0OpenCorePkg/Include/Apple/X64
-I/UefiPackages/OpenCorePkg/Include/Duet
-I/UefiPackages/OpenCorePkg/Include/Generic
-I/UefiPackages/0OpenCorePkg/Include/Intel
-I/UefiPackages/0OpenCorePkg/Include/Microsoft
-I/UefiPackages/0OpenCorePkg/Include/VMware
-I/UefiPackages/0vmfPkg/Include
-I/UefiPackages/UefiCpuPkg/Include

-IInclude

-include

/UefiPackages/MdePkg/Include/Uefi.h
-fshort-wchar

-Wall

-Wextra

-Wno-unused-parameter

-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare

-Wno-sign-compare

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/tree/master/external
https://www.sublimetext.com
https://niosus.github.io/EasyClangComplete

-Wno-varargs
-Wno-unused-const-variable
-DOC_TARGET_NOQOPT=1
-DNO_MSABI_VA_FUNCS=1

Listing 2: ECC Configuration

Warning: Tool developers modifying config.plist or any other OpenCore files must ensure that their teel-cheeks
for-tools check the opencore-version NVRAM variable (see the [Debug Properties| section below) and warn the-user
users if the version listed is unsupported or prerelease. The OpenCore configuration may change across the—releases
m&ekbhe%e%wr\ej%sesamiwwwwvvsy\c’m shall ensure that }t—e&feéuﬂlv—fe}}ewftwh,wggfv@lx\fglvlg\w\ this document. Failure
to do so may result in thistoelto-be-considered-assuch tools being considered to be malware and blocked with-alt

possible-by any means.

3.4 Coding conventions

As with any other project, we have conventions that we follow during development. All third-party contributors are
advised to adhere to the conventions listed below before submitting patches. To minimise abortive work and the
potential rejection of submissions, third-party contributors should initially raise issues to the |Acidanthera Bugtracker
for feedback before submitting patches.

Organisation. The codebase is contained in the OpenCorePkg repository, which is the primary EDK II package.

e Whenever changes are required in multiple repositories, separate pull requests should be sent to each.

e Committing the changes should happen firstly to dependent repositories, secondly to primary repositories to
avoid automatic build errors.

e Each unique commit should compile with XCODE5 and preferably with other toolchains. In the majority of the
cases it can be checked by accessing the [CI interface. Ensuring that static analysis finds no warnings is preferred.

e External pull requests and tagged commits must be validated. That said, commits in master may build but may
not necessarily work.

e Internal branches should be named as follows: author-name-date, e.g. vit9696-ballooning-20191026.

o Commit messages should be prefixed with the primary module (e.g. library or code module) the changes were
made in. For example, OcGuardLib: Add OC_ALIGNED macro. For non-library changes Docs or Build prefixes
are used.

Design. The codebase is written in a subset of freestanding C11 (C17) supported by most modern toolchains used by
EDK II. Applying common software development practices or requesting clarification is recommended if any particular
case is not discussed below.

e Never rely on undefined behaviour and try to avoid implementation defined behaviour unless explicitly covered
below (feel free to create an issue when a relevant case is not present).

e Use OcGuardLib to ensure safe integral arithmetics avoiding overflows. Unsigned wraparound should be relied on
with care and reduced to the necessary amount.

¢ Check pointers for correct alignment with 0cGuardLib and do not rely on the architecture being able to dereference
unaligned pointers.

o Use flexible array members instead of zero-length or one-length arrays where necessary.

o Use static assertions (STATIC_ASSERT) for type and value assumptions, and runtime assertions (ASSERT) for
precondition and invariant sanity checking. Do not use runtime assertions to check for errors as they should never
alter control flow and potentially be excluded.

o Assume UINT32/INT32 to be int-sized and use %u, %d, and %x to print them.

o Assume UINTN/INTN to be of unspecified size, and cast them to UINT64/INT64 for printing with %Lu, %Ld and so
on as normal.

e Do not rely on integer promotions for numeric literals. Use explicit casts when the type is implementation-
dependent or suffixes when type size is known. Assume U for UINT32 and ULL for UINT64.

¢ Do ensure unsigned arithmetics especially in bitwise maths, shifts in particular.

e sizeof operator should take variables instead of types where possible to be error prone. Use ARRAY_SIZE to
obtain array size in elements. Use L_STR_LEN and L_STR_SIZE macros from OcStringLib to obtain string literal
sizes to ensure compiler optimisation.

e Do not use goto keyword. Prefer early return, break, or continue after failing to pass error checking instead of
nesting conditionals.

https://github.com/acidanthera/bugtracker
https://travis-ci.com/acidanthera

Use EFIAPI, force UEFI calling convention, only in protocols, external callbacks between modules, and functions
with variadic arguments.

Provide inline documentation to every added function, at least describing its inputs, outputs, precondition,
postcondition, and giving a brief description.

Do not use RETURN_STATUS. Assume EFI_STATUS to be a matching superset that is to be always used when
BOOLEAN is not enough.

Security violations should halt the system or cause a forced reboot.

Codestyle. The codebase follows the EDK II codestyle with a few changes and clarifications.

3.5
The

When—The W functionality may be useful when trylng to find %
en—git—biseect > i

Write inline documentation for the functions and variables only once: in headers, where a header prototype is
available, and inline for static variables and functions.

Use line length of 120 characters or less, preferably 100 characters.

Use spaces after casts, e.g. (VOID *) (UINTN) Variable.

Use two spaces to indent function arguments when splitting lines.

Prefix public functions with either Oc or another distinct name.

Do not prefix private static functions, but prefix private non-static functions with Internal.

Use SPDX license headers as shown in acidanthera/bugtracker#483.

Debugging
codebase incorporates EDK II debugging and few custom features to improve the experience.

Use module prefixes, 2-5 letters followed by a colon (:), for debug messages. For OpenCorePkg use 0C:, for
libraries and drivers use their own unique prefixes.

Do not use dots (.) in the end of debug messages and separate EFI_STATUS, printed by %r, with a hyphen (e.g.
OCRAM: Allocation of %u bytes failed - Y%r\n).

Use DEBUG_CODE_BEGIN () and DEBUG_CODE_END () constructions to guard debug checks that may potentially
reduce the performance of release builds and are otherwise unnecessary.

Use DEBUG macro to print debug messages during normal functioning, and RUNTIME_DEBUG for debugging after
EXIT_BOOT_SERVICES.

Use DEBUG_VERBOSE debug level to leave debug messages for future debugging of the code, which are currently
not necessary. By default DEBUG_VERBOSE messages are ignored even in DEBUG builds.

Use DEBUG_INFO debug level for all non critical messages (including errors) and DEBUG_BULK_INFO for extensive
messages that should not appear in NVRAM log that is heavily limited in size. These messages are ignored in
RELEASE builds.

Use DEBUG_ERROR to print critical human visible messages that may potentially halt the boot process, and
DEBUG_WARN for all other human visible errors, RELEASE builds included.

OpenCoreproblematic changes. Unoﬂi(nal sources of per-commit O enCore bmar builds, such as Dortama,vlyvavyvglvs&
be useful.

10

https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/bugtracker/issues/483
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://dortania.github.io/builds

4 ACPI

4.1 Introduction

ACPT (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware.
The |ACPI specification| defines—define the standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g.
_DSM, _PRW) for implementation. Modern hardware needs little changes to maintain ACPI compatibility, yet some of
those are provided as a part of OpenCore.

To compile and disassemble ACPI tables, the iASL compiler ean-be-tised-developed by ACPICA —can be used. A GUI
front-end to iASL compiler can be downloaded from Acidanthera/MaciASLL

ACPI changes apply globally (to every operating system) with the following effective order:

e Patch is processed.

e Delete is processed.
e Add is processed.

e Quirks are processed.

Applying the changes globally resolves the problems of incorrect operating system detection —whieh—is—(consistent with

the ACPI specification, not possible before the operating system bootsacecording—to-the- ACPEspeeifieation), operating
system chainloading, and harder-difficult ACPI debugging. Mm may be required

to-earefully—ase-when writin changes to_ _0SIx

Applying the patches early makes it possible to write so called “proxy” patches, where the original method is patched
in the original table and is implemented in the patched table.

There are many-places-providing-several sources of ACPI tables and workarounds. Commonly used ACPI tables are
provided with OpenCore, VirtualSMC, VoodooPS2, and WhateverGreen releases. Besides thosethere-atre-, several
third-party instructions WWMW%H@@@@MIMMLabomtmy and DSDT
subforums (e.g. Battery register splitting guide). A slightly more user-friendly explanation of some tables included
with OpenCore can also be found in Dortania’s |Getting started with ACPI| guide. For more exotic casesthere-also-are
several-other-places-ineluding-, there are several alternatives such as|daliansky[s [ACPI sample collection;but-, Note
however that the quality of the suggested solutions will varyfrem-ease-to-easebe variable.

g ges—.

4.2 Properties

1. Add
Type: plist array
Failsafe: Empty
Description: Load selected tables from the 0C/ACPI directory.

Designed to be filled with plist dict values, describing each add entry. See the section below.

2. Delete
Type: plist array
Failsafe: Empty
Description: Remove selected tables from the ACPI stack.

Designed to be filled with plist dict values, describing each delete entry. See the [Delete Properties| section
below.

3. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in ACPI tables before table addition or removal.

Designed to be filled with plist dictionary values describing each patch entry. See the [Patch Properties|section
below.

4. Quirks
Type: plist dict
Description: Apply individual ACPI quirks described in the [Quirks Properties| section below.

11

https://uefi.org/specifications
https://github.com/acpica/acpica
https://www.acpica.org
https://github.com/acidanthera/MaciASL/releases
https://applelife.ru/forums/xakintosh.67
https://applelife.ru/forums/dsdt.129
https://applelife.ru/posts/498967
https://dortania.github.io
https://dortania.github.io/Getting-Started-With-ACPI
https://github.com/daliansky
https://github.com/daliansky/OC-little

4.3

1.

4.4

Add Properties

Comment

Type: plist string

Failsafe: Emptystring

Description: Arbitrary ASCII string used to provide human readable reference for the entry. H-isimplementation
defined—whether-Whether this value is used is implementation defined.

. Enabled

Type: plist boolean
Failsafe: false
Description: This-ACPItable-willnot-be-added-unlessset-Set to true to add this ACPI table.

Path

Type: plist string

Failsafe: Emptystring

Description: File paths meant to be loaded as ACPI tables. Example values include DSDT . am1, SubDir/SSDT-8.aml,
SSDT-USBX.aml, etc.

The ACPI table load order follows the item order in the array. AH-ACPItablesdoadfrem-ACPI tables are loaded
from the 0C/ACPI directory.

Note: All tables but—tables—with-apart from tables with a DSDT table 1dent1ﬁer (determined by parsing data, not
by filename) insert new tables into the ACPI stack. DSDT S sms-tables perform a replacement
of DSDT tabletables instead.

Delete Properties

. A1l

Type: plist boolean
Failsafe: false (Only delete the first matched table
Description: H-set-Set to true +-to delete all ACPI tables matching the conditionwill-be-deleted—Otherwise

Comment

Type: plist string

Failsafe: Emptystring

Description: Arbitrary ASCII string used to provide human readable reference for the entry. H-isimplementation
defined—whether-Whether this value is used is implementation defined.

Enabled
Type: plist boolean
Failsafe: false

Description: This-ACPItable-will not-beremoved-unlessset-Set to true to remove this ACPI table.

OemTableId
Type: plist data, 8 bytes

Failsafe: All zero (Match any table OEM 1D
Description: Match table OEM ID te-be-equal to this valueunless-atzere.

TableLength
Type: plist integer

Failsafe: 0 (Match any table size
Description: Match table size to-be-equal to this valueunless-o.

TableSignature
Type: plist data, 4 bytes

Failsafe: All zero (Match any table signature
Description: Match table signature te-be-equal to this valueunless-atlzere.

Note: M i ignature-Do not use table signatures when the sequence needs—to-must
be replaeed in multlple places Eepee&a}}yLThls is particularly relevant when performing different }ﬂﬂdfmof

renames.

12

4.5

1.

10.

11.

12.

Patch Properties

Comment

Type: plist string

Failsafe: Emptystring

Description: Arbitrary ASCII string used to provide human readable reference for the entry. H-isimplementation
defined—whether-Whether this value is used is implementation defined.

. Count

Type: plist integer

Failsafe: 0 atch to all occurrences found

Descrlptlon Number of pateh-oeeurrences-to-apply—0 applies-the-patehto-all-ocenrreneesfoundoccurrences to
patch.

Enabled

Type: plist boolean
Failsafe: false

Description: This-ACPIpateh-willnot-be-tised-unlessset-Set to true to apply this ACPI patch.

. Find

Type: plist data

Failsafe: Emptydata

Description: Data to find. Must be equal to Replace in size if set.

Limit

Type: plist integer

Failsafe: 0 (Scarch entire ACPI table)

Description: Maximum number of bytes to search for. Can-be-setto-0 tolook-threush-the-whele- ACPHtable—

Mask

Type: plist data

Failsafe: Empty data(Ignored)

Description: Data bitwise mask used during ﬁnd companson Allows fuzzy search by ignoring not masked (set
to zero) bits. €: : arke fast-Must be equal to Replace in size etherwiseif set.

OemTableId
Type: plist data, 8 bytes

Failsafe: All zero (Match any table OEM ID
Description: Match table OEM ID te-be-equal to this valueunless-atlzere.

Replace

Type: plist data

Failsafe: Emptydata

Description: Replacement data of one or more bytes.

ReplaceMask

Type: plist data

Failsafe: Empty data(Ignored)

Description: Data bitwise mask used during replacement Allows fuzzy replacement by updating masked (set to
non-zero) bits. Ge ate Tast-Must be equal to Replace in size etherwiseif set.

Skip
Type: plist integer

Failsafe: 0 (Do not skip any occurrences

Description: Number of found occurrences to
are applied.

TableLength

Type: plist integer

Failsafe: 0 (Match any table size
Description: Match table size to-be-equal to this valueunless-o.

skip before replacements

TableSignature

13

Type: plist data, 4 bytes

Failsafe: All zero (Match any table signature
Description: Match table signature te-be-equal to this valueunless-atlzere.

smost cases, ACPI patches are not useful and are harmful:

e Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices
(e.g. EC and ECO), be unnecessary, or even fail to rename devices in seleet—certain tables. For ACPI consistency it
is much safer to rename devices at the I/O Registry level, as done by [WhateverGreen.

o Tryto-aveid-Avoid patching _0SI to support a higher level-offeaturesets{feature set level whenever possible.
Ge&&m%%yWhﬂe this enables a number of haeks-workarounds on APTIO firmware, which-result-in—theneed
to—add-meore-it ically results in a need for additional patches. Modern firmware generally does not need it;

aﬂéﬂie%e—ﬂaa{—&e—af&ﬁﬂ&wﬂiﬂﬂ&e}kﬁﬂaﬁ%p&teheﬂrthls and smaller patches work well on firmware that does.
However, laptop vendors usualy—often rely on this method to determine the availability of functions such as

modern I2C input support, thermal adjustment and custom feature additions.

o Avoid patching embedded controller event _Qxx just fer-enabling-to enable brightness keys. The conventional
process to find these keys usually—invelves—massive-modifieation—on-DSDTand-5SDTs-and-typically involves
significant modifications to DSDT and SSDT files and in addition, the debug kext is not stable on newer systems.
Please switeh—to-use the built-in brightness key discovery ef-in BrightnessKeys| instead.

o TFryto-aveid-hacky-Avoid making ad hoc changes such as renaming _PRW or _DSM whenever possible.

-Some cases where patching is actually useful include:

o Refreshing HPET (or another device) method header to avoid compatibility checks by _0SI on legacy hardware.
_STA method with if ((0OSFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return OxF by replacing A0 10 93 4F 53 46 4C 00 with A4 OA OF A3 A3 A3 A3 A3.

» To provide a custom method implementation with-in-within an SSDT, fer-instanees-to inject shutdown fixfixes
on certain computers for instance, the original method can be replaced with a dummy name by patching _PTS
with ZPTS and adding a callback to the original method.

=)

J

The Tianocore AcpiAml.h|source file may help with better understanding ACPI opcodes.

Note: Patches of different Find and Replace lengths are unsupported as they may corrupt ACPI tables and make the
system unstable due to area relocation. If such changes are needed, the utilisation of “proxy” patching or the padding

of NOP to the remaining area might-be-taken-inte-aceountcould be considered.

4.6 Quirks Properties

1. FadtEnableReset
Type: plist boolean
Failsafe: false
Description: Provide reset register and flag in FADT table to enable reboot and shutdown.

Mainly required on legacy hardware and few-a few newer laptops. Can also fix power-button shortcuts. Not
recommended unless required.

2. NormalizeHeaders
Type: plist boolean
Failsafe: false
Description: Cleanup ACPI header fields to workaround macOS ACPI implementation WM
result in boot crashes. Reference: [Debugging AppleACPIPlatform on 10.13 by Alex James akea+t aster(also

wggvy@y@i@vv\wweracernmsteﬂ The issue is-wag fixed in macOS Mojave (10.14).

3. RebaseRegions
Type: plist boolean
Failsafe: false
Description: Attempt to heuristically relocate ACPI memory regions. Not recommended.

ACPI tables are often generated dynamically by the underlying firmware implementation. Among the position-
independent code, ACPI tables may contain the physical addresses of MMIO areas used for device configuration,

usually-grouped-in-—regions-typically grouped by region (e.g. OperationRegion). Changing firmware settings or

14

https://github.com/acidanthera/WhateverGreen
https://github.com/acidanthera/BrightnessKeys
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/AcpiAml.h
https://alextjam.es/debugging-appleacpiplatform/

hardware configuration, upgrading or patching the firmware inevitably leads to changes in dynamically generated
ACPI code, which sometimes lead-teresults in the shift of the addresses in the aforementioned OperationRegion
constructions.

For this reasoni -_the application of modifications to ACPI tables —Fhe

%%m&&lﬁ%g@m%}wm&approach is to make as few as-pessible-changesto-ACPLandtryto
Wm%smmm@ww tables, espeeiatly BSBF particularly
DSDT tables. When this is+ 35 ‘ ten s-cannot be avoided,
WMb%ed on the moat recent DSDT
attempt to remove reads and writes for the affected areas.

When nothing else helps, this option could be tried to avoid stalls at PCI Configuration Begin phase of macOS

booting by attempting to fix the ACPI addresses. It dees—not—do—magie—is not a magic bullet however, and
only works with mest-eemmen-the most typical cases. Do not use unless absolutely required as it can have the

opposite effect on certain platforms and result in boot failures.

. ResetHwSig

Type: plist boolean

Failsafe: false

Description: Reset FACS table HardwareSignature value to 0.

This works around firmware that fail to maintain hardware signature across the reboots and cause issues with
waking from hibernation.

. ResetLogoStatus

Type: plist boolean

Failsafe: false

Description: Reset BGRT table Displayed status field to false.

This works around firmware that provide a BGRT table but fail to handle screen updates afterwards.

15

5 Booter

5.1 Introduction

This section allows 4 3 inds-the application of different types of UEFI modifications en-to operating
M&WWApple bootloader (boot.efi). The modifications currently provide various patches
and environment alterations for different firmware types. Some of these features were originally implemented as &
part of AptioMemoryFix.efi, which is no longer maintained. See-Refer to the [Tips and Tricks| section for migration

stepsinstructions on migration.

If this is used for the first time on a-customised firmware,
following requirements should be fulfiledmet before starting:

—the

o Most up-to-date UEFT firmware (check the motherboard vendor website).

e Fast Boot and Hardware Fast Boot disabled in firmware settings if present.

e Above 4G Decoding or similar enabled in ﬁrrnvvare settlngs if present Note +that on some motherboards{retably
- notably the ASUS WS-X299-PRO)-this s this option results in adverse effects
and must be disabled. While no other rnotherboards w1th the same issue are known, this option should be checked
first whenever erratic boot failures are encountered.

e DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table deleted.

e No ‘slide‘ boot argument present in NVRAM or anywhere else. It is not necessary unless the system cannot be
booted at all or No slide values are usable! Use custom slide! message can be seen in the log.

e CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Consider patching it if no option
is available (for advanced users only). See notes for more details.

o CSM (Compatibility Support Module) disabled in firmware settings if present. On NVIDIA 6xx/AMD 2xx or older,
GOP ROM may have to be flashed first. Use GopUpdate| (see the second post) or AMD UEFI GOP MAKER/in
case of any potential confusion.

e EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.

e VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.

o While it may not be required, sometimes Thunderbolt support, Intel SGX, and Intel Platform Trust may
have to be disabled in firmware settings present.

When debugging sleep issues, Power Nap and automatic power off —(which appear to

sometimes cause wake to black screen or boot loop issues on older platform&—%e—p&ﬂ%%bewtcw
disabled. The specific issues may vary, but ingeneral-generally ACPI tables should be looked up-first—at first.

Here is an example of a bug-defect found in some Z68 motherboards. To turn Power Nap and the others off, run the
following commands in Terminal:

sudo pmset autopoweroff O
sudo pmset powernap 0O
sudo pmset standby O

Note: These settings may reset-at-hardware-chanee-be reset by hardware changes and in certain other circumstances.
To view their current statetise-, use the pmset -g command in Terminal.

5.2 Properties

1. MmioWhitelist
Type: plist array
Description: Designed to be filled with plist dict values, describing addresses critical for particular firmware
functioning when DevirtualiseMmio quirk is in use. See the [MmioWhitelist Properties| section below.

2. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in booter.

Designed to be filled with plist dictionary values, describing each patch. See the [Patch Properties| section
below.

16

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

3.

5.4

Quirks
Type: plist dict
Description: Apply individual booter quirks described in the [Quirks Properties| section below.

MmioWhitelist Properties

. Address

Type: plist integer

Failsafe: 0

Description: Exceptional MMIO address, which memory descriptor should be left virtualised (unchanged) by
DevirtualiseMmio. This means that the firmware will be able to directly communicate with this memory region
during operating system functioning, because the region this value is in will be assigned a virtual address.

The addresses written here must be part of the memory map, have Ef iMemoryMappedI0 type and EFI_MEMORY_RUNTIME

attribute (highest bit) set. Fo-The debug log can be used to find the list of the candidatesthe-debuglog—eanbe

Comment

Type: plist string

Failsafe: Emptystring

Description: Arbitrary ASCII string used to provide human readable reference for the entry. H-is-implementation
defined—whether-Whether this value is used is implementation defined.

Enabled
Type: plist boolean
Failsafe: false

Description: Exclude MMIQ address from the devirtualisation
procedure.

Patch Properties

. Arch

Type: plist string
Failsafe: Any (Apply to any supported architecture
Description: Booter patch architecture (Any-1386, x86_64).

Comment

Type: plist string

Failsafe: Emptystring

Description: Arbitrary ASCII string used to provide human readable reference for the entry. H-isimplementation
defined—whether-Whether this value is used is implementation defined.

Count
Type: plist integer

Failsafe: 0 (Apply to all occurrences found

Description: Number of patch occurrences to apply. ©

Enabled
Type: plist boolean
Failsafe: false

Description:

Set to true to activate this booter patch.
Find

Type: plist data

Failsafe: Emptydata

Description: Data to find. This-must-Must be equal to Replace in size if set.

Identifier

Type: plist string

Failsafe: EmptysteingAny (Match any booter)
Description: Apple for macOS booter (generally boot efl) or a name with saffise{e-e—a suffix, such as
bootmgfw.efi}- for a specific booter:-er4Any 5 artlse ateh—

17

10.

11.

Limit
Type: plist integer

Failsafe: 0 (Search the entire booter
Description: Maximum number of bytes to search for. Ganbesetto-6 to-loek-through-thewhele-booter—

Mask

Type: plist data

Failsafe: Empty data(Ignored)

Description: Data bitwise mask used during ﬁnd comparlbon Allows fuzzy search by ignoring not masked (set
to zero) bits. €x : acke st-Must be equal to Find in size etherwiseif set.

Replace

Type: plist data

Failsafe: Emptydata

Description: Replacement data of one or more bytes.

ReplaceMask

Type: plist data

Failsafe: Empty data(Ignored)

Description: Data bitwise mask used during replacement Allows fuzzy replacement by updating masked (set to
non-zero) bits. ' ate Tast-Must be equal to Replace in size etherwiseif set.

Skip
Type: plist integer

Failsafe: 0 (Do not skip any occurrences)

Description: Number of found occurrences to
are applied.

sskip before replacements

Quirks Properties

. AllowRelocationBlock

Type: plist boolean
Failsafe: false
Description: Allows booting macOS through a relocation block.

Reloeation-The relocation block is a scratch buffer allocated in the lower 4 GB te-be-used for loading the kernel
and related structures by EfiBoot on ﬁm%ﬂmmﬁwww}%mw is
otherwise occupied by the{assumedto-be(assumed) non-runtime data. Right before kernel startup, the relocation
block is copied back to lower addresses. Similarly, all the other addresses pointing to_the relocation block are also
carefully adjusted. Releeation-The relocation block can be used when:

e No better slide exists (all the memory is used)
e slide=0 is forced (by an argument or safe mode)
o KASLR (slide) is unsupported (this is macOS 10.7 or older)

This quirk requires ProvideCustomSlide to alse-be enabled and generallyneeds-typically also requires enablin
Av01dRunt1meDefrag to werleﬁ}vnvcvtrg& correctly. Hibernation is not supported when booting with a relocation

which will only be used if required when the quirk is enabled}.

Note: While this quirk is required to run older macOS versions on platforms with used lower memory, it is

not compatible with some hardware and macOS 11. In this-ease-one-maytryto-se-such cases, consider using
EnableSafeModeSlide instead.

AvoidRuntimeDefrag

Type: plist boolean

Failsafe: false

Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on ﬁrmware that uses
SMM backing for seleet-certain services such as variable storage. SMM may try to access stead—

they—get-memory by ph; rsical addresses in non-SMM areas but this may sometimes have been moved by boot efi.
This option prevents boot.efi from moving such data.

18

Note: Most types of firmware, apart from Apple and VMware, need this quirk.

. DevirtualiseMmio

Type: plist boolean

Failsafe: false

Description: Remove runtime attribute from seleet-certain MMIO regions.

This eption—reduees-quirk reduces the stolen memory footprint frem-in the memory map by removing the runtime
bit for known memory regions. This quirk may result in the-an increase of KASLR slides available - +hut-but
w1thout additional measures, it is not necessarily compatible with the target boardwithout-additional meastres.

WVVWVWVVVWVVWVVWVV\}VV\,

._This quirk typically frees between 64 $e-and 256 megabytes of memory{, present in
the debug log} and on some platformsit-, is the only way to boot macOS which otherwise fails with allocation

error-at-errors at the bootloader stage.

This option is generally-useful on all types of firmware, except for some very old ones such as Sandy Bridge. On
some-types-ofcertain firmware, a list of addresses that need virtual addresses for proper NVRAM and hibernation
functionality may be required. Use the MmioWhitelist section for this.

. DisableSingleUser

Type: plist boolean

Failsafe: false

Description: Disable single user mode.

This is a security option that restricts the activation of single user mode by ignoring the CMD+S hotkey and the -s
boot argument. The behaviour with this quirk enabled is supposed to match T2-based model behaviour. Refer to
this larchived article to understand how to use single user mode with this quirk enabled.

. DisableVariableWrite

Type: plist boolean

Failsafe: false

Description: Protect from macOS NVRAM write access.

This is a security option that restricts NVRAM access in macOS. This quirk requires 0C_FIRMWARE_RUNTIME
protocol implemented in OpenRuntime.efi.

Note: This quirk can also be used as an uglywerkareund-to-bugey-ad hoc workaround for defective UEFI runtime
services implementations that fail-are unable to write variables to NVRAM and break-therest-of the-operating

systemrresults in operating system failures.

. DiscardHibernateMap

Type: plist boolean

Failsafe: false

Description: Reuse original hibernate memory map.

This option forces the XNU kernel to ignore a newly supplied memory map and assume that it did not change
after waking from hibernation. This behaviour is required i es-to-by Windows
to work. Windows mandates preservepreserving runtime memory size and locatlon after S4 walke.

Note: This may be used to workaround

legaey-defective memory map implementations on older rare legacy hardware. Examples of such hardware are
Ivy Bridge laptops with Insyde firmware ;sueh-as-such as the Acer V3-571G. Do not use this unless-a—ecomplete

option without a full understanding of the ﬁeﬂ%eq{ieﬁ(te’s—(—dﬂ—be—eﬁﬂifeé implications.
. EnableSafeModeSlide
Type: plist boolean

Failsafe: false
Description: Patch bootloader to have KASLR enabled in safe mode.

This option is relevant to the-usersthathave-users with issues booting to safe mode (e.g. by holding shift or
using-with using the -x boot argument). By default, safe mode forces 0 slide as if the system was launched with

the slide=0 boot argument. ?hi%qtﬁfle%ﬂe%%@ja&%e}k

o This quirk attempts to patch the boot.efi i ttimitati :
this limitation and to allow using other values (from 1 to 255 %be%ed»@&llw\e)w

+ile to remove

19

https://web.archive.org/web/20200517125051/https://support.apple.com/en-us/HT201573
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-uefi#hibernation-state-s4-transition-requirements

10.

11.

12.

e This quirk requires enabling ProvideCustomSlideto-be-enabled—.

Note: The neeessit i ik tabili need for this option is dependent on
the availability of safe mode It can be enabled when bootmg to safe mode fails;+his ton—es —trie >
enabled.

EnableWriteUnprotector

Type: plist boolean

Failsafe: false

Description: Permit write access to UEFI runtime services code.

This option bypasses R permissions in code pages of UEFI runtime services by removing write protection (WP)
bit from CRO register during their execution. This quirk requires 0C_FIRMWARE_RUNTIME protocol implemented in
OpenRuntime.efi.

Note: This quirk may potentially weaken firmware security;—please—. Please use RebuildAppleMemoryMap if
the firmware supports memory attributes table (MAT). Refer to the 0CABC: MAT support is 1/0 log entry to
determine whether MAT is supported.

ForceExitBootServices

Type: plist boolean

Failsafe: false

Description: Retry ExitBootServices with new memory map on failure.

Try to ensure that the ExitBootServices call succeedseven—with—outdated—MemoryMap—key—argument—by
obtainine-. If re u1red an outdated MemoryMap key argument can be used by obtaining the current memory map
and retrying the ExitBootServices call.

Note: The neeessity-ofneed for this quirk is determined by early boot crashes of the firmware. Do not use this
option without a full understanding of the eensegueneesimplications.

ProtectMemoryRegions

Type: plist boolean

Failsafe: false

Description: Protect memory regions from incorrect access.

Some types of firmware incorrectly map seleet-certain memory regions:

e The CSM region can be marked as boot services code, or data, which leaves it as free memory for the XNU
kernel.

o MMIO regions can be marked as reserved memory and stay unmapped;but-may—._They may however be
required to be accessible at runtime for NVRAM support.

This quirk attempts to fix the types of these regions, e.g. ACPI NVS for CSM or MMIO for MMIO.

Note: The neeessity-ofneed for this quirk is determined by artifacts, sleep wake issues, and boot failures. Only
This quirk is typically only required by very old firmwaretypieatlyneed-this-quirk.

ProtectSecureBoot

Type: plist boolean

Failsafe: false

Description: Protect UEFI Secure Boot variables from being written.

Reports security violation during attempts to write to db, dbx, PK, and KEK variables from the operating system.

Note: This quirk meaindy-attempts to avoid issues with NVRAM implementations with

issues, such as seleet-Insyde-or-on the MacPro5,1 as well as on certain Insyde firmware w1thout arbage collectlon
or with defective garbage collection.

ProtectUefiServices

Type: plist boolean

Failsafe: false

Description: Protect UEFT services from being overridden by the firmware.

Some modern firmware, including on virtual machines such as VMware may update pointers to UEFT services
during driver loading and related actions. 5 5 : ades—Consequently, this directl

20

fragmentati

13.

14.

15.

obstructs other quirks that affect memory management, such as DevirtualiseMmio, ProtectMemoryRegions, or
RebuildAppleMemoryMap, and may also break-obstruct other quirks depending on the effeets-of-thesescope of
such.

Note: On VMware, the need for this quirk may be diagnesed-by-determined by the appearance of the “Your Mac
OS guest might run unreliably with more than one virtual core.” message.
ProvideCustomSlide

Type: plist boolean
Failsafe: false
Description: Provide custom KASLR slide on low memory.

This option performs memory map analysis of the firmware and checks whether all slides (from 1 to 255) can be
used. As boot.efi generates this value randomly with rdrand or pseudo randomly rdtsc, there is a chance of
boot failure when it chooses a conflicting slide. In ease-cases where potential conflicts exist, this option forces

macOS to use-select a pseudo random value ﬂm&ﬁ%ﬂ%@m This also ensures
that the slide= argument is never passed to the operating system (for security reasons).

Note: The neeessity-ofneed for this qu1rk is determlned by the OCABC Only N/256 slide values are usable!
message in the debug log. ‘ , s+

ProvideMaxSlide

Type: plist integer

Failsafe: 0

Description: Provide maximum KASLR slide when higher ones are unavailable.

This option overrides the maximum slide of 255 by a user specified value between 1 and 254 inelusive-(inclusive)
when ProvideCustomSlide is enabled. It is believed-assumed that modern firmware allocates pool memory from
top to bottom, effectively resulting in free memory when slide scanning is used later as temporary memory during
kernel loading. When such memory is not available, this option ean-step-stops the evaluation of higher slides.

Note: The neeessity-ofneed for this quirk is determined by random boot failturefailures when ProvideCustomSlide
is enabled and the randomized slide fall-falls into the unavailable range. When AppleDebug is enabled, usually
the debug log Wmm%wges such as AAPL: [EB|‘LD:LKC] } Err(0x9). To find the
optimal value, manually-append slide=Xto—, where X is the slide value, to the boot-args and leg—select the
largest one that swill-does not result in boot failures.

RebuildAppleMemoryMap
Type: plist boolean
Failsafe: false

Description: Generate MemoryM: mpati i ¢ macOS compatible Memory Map.
The Apple kernel has several limitations in—parsing-on parsing the UEFI memory map:

o The Memory map size must not exceed 4096 bytes as the Apple kernel maps it as a single 4K page. Sinee
As some types of firmware can have very large memory maps, potentially over 100 entries, the Apple kernel
will crash on boot.

o The Memory attributes table is ignored. EfiRuntimeServicesCode memory statically gets RX permissions ;
and-while all other memory types get RW permissions. Sinee-As some firmware drivers may write to global
variables at runtime, the Apple kernel will crash at calling UEFI runtime services s-unless-unless the driver
.data section has a EfiRuntimeServicesData type.

To workaround these limitations, this quirk applies memory attribute table permissions to the memory map
passed to the Apple kernel and optionally attempts to unify contiguous slots of similar types if the resulting
memory map exceeds 4 KB.

Note 1: Since several types of firmware come with incorrect memory protection tables, this quirk often comes
paired with SyncRuntimePermissions.

Note 2: The neeessity—of-need for this quirk is determined by early boot failures. This quirk replaces
EnableWriteUnprotector on firmware supporting Memory Attribute Tables (MAT). This quirk is usually
typically unnecessary when using OpenDuetPkg +-but may be required to boot macOS 10.6, and earlier, for reasons
that are net-elearas yet unclear.

21

16.

17.

18.

SetupVirtualMap

Type: plist boolean

Failsafe: false

Description: Setup virtual memory at SetVirtualAddresses.

Some types of firmware access memory by virtual addresses after a SetVirtualAddresses call, resulting in early
boot crashes. This quirk workarounds the problem by performing early boot identity mapping of assigned virtual
addresses to physical memory.

Note: The neeessity-ofneed for this quirk is determined by early boot failures. Gurrently,new firmware—with

SignalAppleOS

Type: plist boolean

Failsafe: false

Description: Report macOS being loaded through OS Info for any OS.

This quirk is useful on Mac firmware, which behaves-differently—in-different-OSloads different operating systems
with different hardware configurations. For example, it is supposed to enable Intel GPU in Windows and Linux

in some dual-GPU MacBook models.

SyncRuntimePermissions

Type: plist boolean

Failsafe: false

Description: Update memory permissions for the runtime environment.

Some types of firmware fail to properly handle runtime permissions:

e They incorrectly mark OpenRuntime as not executable in the memory map.

e They incorrectly mark OpenRuntime as not executable in the memory attributes table.
e They lose entries from the memory attributes table after OpenRuntime is loaded.

o They mark items in the memory attributes table as read-write-execute.

This quirk tries to update memory map and memory attributes table to correct this.

Note: The need for this quirk is indicated by early boot failures. Only firmware released after 2017 is typically
affected.

22

https://github.com/acidanthera/bugtracker/issues/719

6 DeviceProperties

6.1 Introduction

Device configuration is provided to macOS with a dedicated buffer, called Ef iDevicePathPropertyDatabase. This
buffer is a serialised map of DevicePaths to a map of property names and their values.

Property data can be debugged with |gfxutil. To obtain current property data, use the following command in macOS:

ioreg -1w0 -p IODeviceTree -n efi -r -x | grep device-properties |
sed 's/.*<//;s/>.x//' > /tmp/device-properties.hex &&
gfxutil /tmp/device-properties.hex /tmp/device-properties.plist &&
cat /tmp/device-properties.plist

Device properties are part of the I0DeviceTree (gIODT) plane of the macOS I/O Registry. This plane has several
construction stages relevant for the platform initialisation. While the early construction stage is performed by the
XNU kernel in the I0DeviceTreeAlloc method, the majority of the construction is performed by the platform expert,
implemented in AppleACPIPlatformExpert.kext.

AppleACPIPlatformExpert incorporates two stages of I0DeviceTree construction implemented by calling
AppleACPIPlatformExpert: :mergeDeviceProperties:

1. During ACPI table initialisation through the recursive ACPI namespace scanning by the calls to
AppleACPIPlatformExpert: :createDTNubs.

2. During IOService registration (I0Services: :registerService) callbacks implemented as a part of
AppleACPIPlatformExpert: :platformAdjustService function and its private worker method
AppleACPIPlatformExpert: :platformAdjustPCIDevice specific to the PCI devices.

The application of the stages depends on the device presence in ACPI tables. The first stage applies very early but
exclusively to the devices present in ACPI tables. The second stage applies to all devices much later after the PCI
configuration and may repeat the first stage if the device was not present in ACPI.

For all kernel drivers —V&L}r}b}kthat shat may inspect the I0DeviceTree plane without probing, such as Lilu and its plugins
(e.g. Bitu and sueh-as-WhateverGreen)it-is-partienlarly—, it is especially important to ensure device presence
in the ACPI tables. F&ﬂiﬂgm% to do so may result in all-kinds-ef-erratic behaviour caused by ignoring the
injected device properties as they were not constructed at the first stage. See SSDT-IMEI.dsl and SSDT-BRGO.ds1 for
an example.

6.2 Properties

1. Add
Type: plist dict
Description: Sets device properties from a map (plist dict) of device paths to a map (plist dict) of variable
names and their values in plist metadatamultidata format. Device paths must be provided in canonic string
format (e.g. PciRoot (0x0)/Pci(0x1,0x0)/Pci(0x0,0x0)). Properties will only be set if not present and not
deleted.

Note: Currently properties may only be (formerly) added by the original driver, so unless a separate driver was
installed, there is no reason to delete the variables.

2. Delete
Type: plist dict
Description: Removes device properties from a map (plist dict) of device paths to an array (plist array)
of variable names in plist string format.

6.3 Common Properties
Some known properties include:

e device-id
User-specified device identifier used for I/O Kit matching. Has 4 byte data type.

23

https://github.com/acidanthera/gfxutil

7

7.1

Kernel

Introduction

This section allows te-apply-the application of different kinds of kernelspace modifications on Apple Kernel (XNU).
The modifications currently provide driver (kext) injection, kernel and driver patching, and driver blocking.

7.2

1.

Properties

Add

Type: plist array

Failsafe: Empty

Description: Load selected kernel drivers from 0C/Kexts directory.

Designed to be filled with plist dict values, describing each driver. See the section below.
Kernel driver load order follows the item order in the array, thus the dependencies should be written prior to
their consumers.

To track the dependency order, inspect the 0SBundleLibraries key in the Info.plist of the kext. Any kext
mentioned in the 0SBundlelLibraries of the other kext must precede this kext.

Note: Kexts may have inner kexts (Plug-Ins) in their bundle. Each inner kext must be added separately.

Block

Type: plist array

Failsafe: Empty

Description: Remove selected kernel drivers from prelinked kernel.

Designed to be filled with plist dictionary values, describing each blocked driver. See the [Block Properties|
section below.

Emulate

Type: plist dict

Description: Emulate seleet-certain hardware in kernelspace via parameters described in the [Emulate Properties|
section below.

Force

Type: plist array

Failsafe: Empty

Description: Load kernel drivers from system volume if they are not cached.

Designed to be filled with plist dict values, describing each driver. See the [Force Properties| section below.
This section resolves the problem of injecting drivers that depend on other drivers, which are not cached otherwise.
The issue normally affects older operating systems, where various dependency kexts, such as I0AudioFamily or
IONetworkingFamily may not be present in the kernel cache by default. ¥Kernel-The kernel driver load order
follows the item order in the array, thus the dependencies should be written prior to their consumers. Force
happens before Add.

Note: The signature of the “forced” kernel drivers is not checked anyhow, making the use of this feature extremely
dangerous and undesired for secure boot. This feature may not work on encrypted partitions in newer operating
systems.

Patch

Type: plist array

Failsafe: Empty

Description: Perform binary patches in kernel and drivers prior to driver addition and removal.

Designed to be filled with plist dictionary values, describing each patch. See the [Patch Properties|section
below.

Quirks
Type: plist dict
Description: Apply individual kernel and driver quirks described in the [Quirks Properties| section below.

25

https://opensource.apple.com/source/xnu

Scheme

Type: plist dict

Description: Define kernelspace operation mode via parameters described in the [Scheme Properties| section
below.

Add Properties

1. Arch

Type: plist string

Failsafe: Any (Apply to any supported architecture

Description: Kext architecture (Any1386, x86_64).

. BundlePath

Type: plist string
Failsafe: Emptystrine
Description: Kext bundle path (e.g. Lilu.kext or MyKext.kext/Contents/PlugIns/MySubKext.kext).

Comment

Type: plist string

Failsafe: Emptystring

Description: Arbitrary ASCII string used to provide human readable reference for the entry. H-isimplementation
defined—whether-Whether this value is used is implementation defined.

. Enabled

Type: plist boolean
Failsafe: false
Description: This kernel driver will not be added unless set to true.

ExecutablePath

Type: plist string

Failsafe: Emptystring

Description: Kext executable path relative to bundle (e.g. Contents/Mac0S/Lilu).
MaxKernel

Type: plist string

Failsafe: Emptystrine

Description: Adds kernel driver on specified macOS version or older.

Kernel version can be obtained with uname -r command, and should look like 3 numbers separated by dots, for
example 18.7.0 is the kernel version for 10.14.6. Kernel version interpretation is implemented as follows:

ParseDarwinVersion(k, A, u) = £ - 10000 Where k € (0,99) is kernel version major
+ A-100 Where X € (0,99) is kernel version minor
+u Where p € (0,99) is kernel version patch

Kernel version comparison is implemented as follows:

ParseDarwinVersion(MinKernel), If MinKernel is valid
o =
0 Otherwise
5= ParseDarwinVersion(MaxKernel), If MaxKernel is valid
00 Otherwise
) ParseDarwinV ersion(FindDarwinV ersion()), If valid "Darwin Kernel Version" is found
00 Otherwise

fla,B,y) =a<y<p

Here ParseDarwinVersion argument is assumed to be 3 integers obtained by splitting Darwin kernel version
string from left to right by the . symbol. FindDarwinVersion function looks up Darwin kernel version by
locating "Darwin Kernel Version x.A.u" string in the kernel image.

26

MinKernel

Type: plist string

Failsafe: Emptystring

Description: Adds kernel driver on specified macOS version or newer.

Note: Refer to the [Add MaxKernel description| for matching logic.

PlistPath

Type: plist string

Failsafe: Emptystrine

Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

Block Properties

1. Arch

Type: plist string

Failsafe: Any (Apply to any supported architecture

Description: Kext block architecture (Any-1386, x86_64).

Comment

Type: plist string

Failsafe: Emptystrine

Description: Arbitrary ASCII string used to provide human readable reference for the entry. H-is-implementation
defined—-whether-Whether this value is used is implementation defined.

Enabled

Type: plist boolean

Failsafe: false

Description: This kernel driver will not be blocked unless set to true.

Identifier

Type: plist string

Failsafe: Emptystrine

Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

MaxKernel

Type: plist string

Failsafe: Emptystring

Description: Blocks kernel driver on specified macOS version or older.

Note: Refer to the [Add MaxKernel description| for matching logic.

MinKernel

Type: plist string

Failsafe: Emptystring

Description: Blocks kernel driver on specified macOS version or newer.

Note: Refer to the [Add MaxKernel description| for matching logic.

Emulate Properties

. CpuidiData

Type: plist data, 16 bytes
Failsafe: All zero
Description: Sequence of EAX, EBX, ECX, EDX values to replace CPUID (1) call in XNU kernel.

This property primarily se smeets three requirements:

o Enabling support effor an unsupported CPU model (e.g. Intel Pentium).
« Enabling support ef-for a CPU model that-is-not yet supported by a specific version of macOS swhieh-usually

is-old—(typically old versions).

¢ Enabling XCPM support for an unsupported CPU variant.

27

7.6

Note 1: It may also be the case that the CPU model is supported but there is no power management supported
(e.g. virtual machines). In this case, MinKernel and MaxKernel can be set to restrict CPU virtualisation and
dummy power management patches to the particular macOS kernel version.

Note 2: Normally it is only the value of EAX that needs to be taken care of, since it represents the full CPUID.
The remaining bytes are to be left as zeroes. Byte order is Little Endian, so for example, C3 06 03 00 stands for
CPUID 0x0306C3 (Haswell).

Note 8: For XCPM support it is recommended to use the following combinations.

o Haswell-E (0x0306F2) to Haswell (0x0306C3):
CpuidiData: C3 06 03 00 00 00 00 00O 00 00 00 00O 0O OO0 00 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00
o Broadwell-E (0x0406F1) to Broadwell (0x0306D4):
CpuidiData: D4 06 03 00 00 00 00 00 OO 00 00 00 00 OO OO 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

Note 4: Nete-Be aware that the following configurations are unsupported by XCPM (at least out of the box):

o Consumer Ivy Bridge (0x0306A9) as Apple disabled XCPM for Ivy Bridge and recommends legacy power
management for these CPUs. _xcpm_bootstrap should manually be patched to enforce XCPM on these
CPUs instead of this option.

e Low-end CPUs (e.g. Haswell+ Pentium) as they are not supported properly by macOS. Legacy haeks
workarounds for older models can be found in the Special NOTES section of acidanthera/bugtracker#365.

CpuidiMask

Type: plist data, 16 bytes

Failsafe: All zero

Description: Bit mask of active bits in CpuidiData.

When each CpuidiMask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of CpuidiData.

DummyPowerManagement

Type: plist boolean

Failsafe: false

Requirement: 10.4

Description: Disables AppleIntelCpuPowerManagement.

Note 1: This option is a preferred alternative to NullCpuPowerManagement .kext for CPUs without native power
management driver in macOS.

Note 2: While this option is usualytypically needed to disable AppleIntelCpuPowerManagement on unsupported
platforms, it can also be used to disable this kext in other situations (e.g. with CpuidiData left blank).

MaxKernel

Type: plist string

Failsafe: Emptystring

Description: Emulates CPUID and applies DummyPowerManagement on specified macOS version or older.

Note: Refer to the [Add MaxKernel description| for matching logic.

MinKernel

Type: plist string

Failsafe: Emptystring

Description: Emulates CPUID and applies DummyPowerManagement on specified macOS version or newer.

Note: Refer to the [Add MaxKernel description| for matching logic.

Force Properties

. Arch

Type: plist string

Failsafe: Any (Apply to any supported architecture

Description: Kext architecture (Any;-1386, x86_64).

28

https://github.com/acidanthera/bugtracker/issues/365

BundlePath

Type: plist string

Failsafe: Emptystring

Description: Kext bundle path (e.g. System\Library \Extensions \IONetworkingFamily.kext).

Comment

Type: plist string

Failsafe: Emptystrine

Description: Arbitrary ASCII string used to provide human readable reference for the entry. t-isimplementation
defined—whether-Whether this value is used is implementation defined.

Enabled

Type: plist boolean

Failsafe: false

Description: This kernel driver will not be added when not present unless set to true.

ExecutablePath

Type: plist string

Failsafe: Emptystrine

Description: Kext executable path relative to bundle (e.g. Contents/Mac0S/I0NetworkingFamily).

Identifier

Type: plist string

Failsafe: Emptystrine

Description: Kext identifier to perform presence checking before adding (e.g. com.apple.iokit.I0ONetworkingFamily).
Only drivers which identifiers are not be found in the cache will be added.

MaxKernel

Type: plist string

Failsafe: Emptystrine

Description: Adds kernel driver on specified macOS version or older.

Note: Refer to the [Add MaxKernel description| for matching logic.

MinKernel

Type: plist string

Failsafe: Emptystrine

Description: Adds kernel driver on specified macOS version or newer.

Note: Refer to the [Add MaxKernel description| for matching logic.

PlistPath

Type: plist string

Failsafe: Emptystrine

Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

Patch Properties

1. Arch

Type: plist string

Failsafe: Any (Apply to any supported architecture

Description: Kext patch architecture (Any;-1386, x86_64).

. Base

Type: plist string
Failsafe: Empty string(Ignored)

Description: Selects symbol-matched base for patch lookup (or 1mmed1ate replacement) by obtaining the address
of the provided symbol name.

Comment
Type: plist string
Failsafe: Emptystring

29

10.

11.

12.

13.

14.

Description: Arbitrary ASCII string used to provide human readable reference for the entry. H-is-implementation
defined—whether-Whether this value is used is implementation defined.

Count

Type: plist integer

Failsafe: 0

Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

Enabled

Type: plist boolean

Failsafe: false

Description: This kernel patch will not be used unless set to true.

Find

Type: plist data
Failsafe: Empty data(Immediate replacement at Base).
Description: Data to find. s et :
Replace in size otherwiseif set.

Must be equal to

Identifier

Type: plist string

Failsafe: Emptystrine

Description: Kext bundle identifier (e.g. com.apple.driver.AppleHDA) or kernel for kernel patch.

Limit

Type: plist integer

Failsafe: 0 (Scarch entire kext or kernel)

Description: Maximum number of bytes to search for. Ganbeset-+te-0 tolook-throushthe-whele kext-orkernel

Mask

Type: plist data

Failsafe: Empty data(Ignored)

Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set

to zero) bits. Can-be-set-to-empty-datato-beignored—Must-Must be equal to Replace in size etherwiseif set.

MaxKernel

Type: plist string

Failsafe: Emptystrine

Description: Patches data on specified macOS version or older.

Note: Refer to the [Add MaxKernel description| for matching logic.

MinKernel

Type: plist string

Failsafe: Emptystring

Description: Patches data on specified macOS version or newer.

Note: Refer to the |[Add MaxKernel description| for matching logic.

Replace

Type: plist data

Failsafe: Emptydata

Description: Replacement data of one or more bytes.

ReplaceMask

Type: plist data

Failsafe: Empty data(Ignored)

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to

non-zero) bits. Gan-beset-to-empty-datato-beignored—Must-Must be equal to Replace in size etherwiseif set.
Skip
Type: plist integer

Failsafe: 0 (Do not skip any occurrences

30

7.8

Description: Number of found occurrences to
are applied.

skip before replacements

Quirks Properties

. AppleCpuPmCfgLock

Type: plist boolean

Failsafe: false

Requirement: 10.4

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in Applelntel CPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Some types of firmware lock the PKG_CST_CONFIG_CONTROL MSR register and the bundled VerifyMsrE2 tool can
be used to check its state. Note that some types of firmware only have this register locked on some cores.

As modern firmware provide a CFG Lock setting that allows configuring the PKG_CST_CONFIG_CONTROL MSR
register lock, this option should be avoided whenever possible. On APTIO firmware that do not provide a CFG
Lock setting in the GUI, it is possible to access the option directly:

(a) Download UEFITool and IFR-Extractor.

(b) Open the firmware image in UEFITool and find CFG Lock unicode string. If it is not present, the firmware
may not have this option and the process should therefore be discontinued.

(c) Extract the Setup.bin PE32 Image Section (the UEFITool found) through the Extract Body menu option.

(d) Run IFR-Extractor on the extracted file (e.g. ./ifrextract Setup.bin Setup.txt).

(e) Find CFG Lock, VarStoreInfo (VarOffset/VarName): in Setup.txt and remember the offset right after
it (e.g. 0x123).

(f) Download and run Modified GRUB Shell compiled by [brainsucker or use a newer version| by |datasonel

(¢) Enter setup_var 0x123 0x00 command, where 0x123 should be replaced by the actual offset, and reboot.

Warning: Variable offsets are unique not only to each motherboard but even to its firmware version. Never ever
try to use an offset without checking.

. AppleXcpmCfgLock

Type: plist boolean

Failsafe: false

Requirement: 10.8 (not required for older)

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should be avoided whenever possible. See AppleCpuPmCfgLlock description for more details.

AppleXcpmExtraMsrs

Type: plist boolean

Failsafe: false

Requirement: 10.8 (not required for older)

Description: Disables multiple MSR access critical for seleet-certain CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-SP, and similar
CPUs. More details on the XCPM patches are outlined in [acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

. AppleXcpmForceBoost

Type: plist boolean

Failsafe: false

Requirement: 10.8 (not required for older)

Description: Forces maximum performance in XCPM mode.

This patch writes 0xFFOO0 to MSR_IA32_PERF_CONTROL (0x199), effectively setting maximum multiplier for all the
time.

Note: While this may increase the performance, this patch is strongly discouraged on all systems but those
explicitly dedicated to scientific or media calculations. fn-general-only-Only certain Xeon models typically benefit

31

https://github.com/LongSoft/UEFITool/releases
https://github.com/LongSoft/Universal-IFR-Extractor/releases
http://brains.by/posts/bootx64.7z
https://geektimes.com/post/258090
https://github.com/datasone/grub-mod-setup_var
https://github.com/datasone
https://github.com/acidanthera/bugtracker/issues/365

10.

11.

from the patch.

CustomSMBIOSGuid

Type: plist boolean

Failsafe: false

Requirement: 10.4

Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

DisableloMapper

Type: plist boolean

Failsafe: false

Requirement: 10.8 (not required for older)

Description: Disables I0Mapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to deleting DMAR ACPI table and disabling VT-d in firmware preferences,
which does not break-obstruct VT-d support in other systems in case they need itthis.

DisablelLinkeditJettison

Type: plist boolean

Failsafe: false

Requirement: 11

Description: Disables __LINKEDIT jettison code.

This optlon lets L11u kextar 3 - s, and possibly other kexts, function in macOS Big Sur with
_at their best erformance levels without requiring the keepsyms=1 boot argument.

DisableRtcChecksum

Type: plist boolean

Failsafe: false

Requirement: 10.4

Description: Disables primary checksum (0x58-0x59) writing in AppleRTC.

Note 1: This option will not protect other areas from being overwritten, see RTCMemoryFixup kernel extension
if this is desired.

Note 2: This option will not protect areas from being overwritten at firmware stage (e.g. macOS bootloader), see
AppleRtcRam protocol description if this is desired.

ExtendBTFeatureFlags

Type: plist boolean

Failsafe: false

Requirement: 10.8

Description: Set FeatureFlags to 0xOF for full functionality of Bluetooth, including Continuity.

Note: This option is a substitution for BTALEContinuityFixup.kext, which does not function properly due to late
patching progress.

ExternalDiskIcons

Type: plist boolean

Failsafe: false

Requirement: 10.4

Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should be avoided whenever possible. Modern firmware uswals—typically have compatible
AHCI controllers.

ForceSecureBootScheme

Type: plist boolean

Failsafe: false

Requirement: 11

Description: Force x86 scheme for IMG4 verification.

Note: This option is required on virtual machines when using SecureBootModel different from x86legacy.

32

https://github.com/acidanthera/RTCMemoryFixup

12.

13.

14.

15.

16.

17.

IncreasePciBarSize

Type: plist boolean

Failsafe: false

Requirement: 10.10

Description: Increases 32-bit PCI bar size in IOPCIFamily from 1 to 4 GBs.

Note: This option should be avoided whenever possible.
er-broken—A need for this option indicates misconfigured or defectlve ﬁrmware

LapicKernelPanic

Type: plist boolean

Failsafe: false

Requirement: 10.6 (64-bit)

Description: Disables kernel panic on LAPIC interrupts.

LegacyCommpage

Type: plist boolean

Failsafe: false

Requirement: 10.4 - 10.6

Description: Replaces the default 64-bit commpage bcopy implementation with one that does not require
SSSE3, useful for legacy platforms. This prevents a commpage no match for last panic due to no available
64-bit becopy functions that do not require SSSE3.

PanicNoKextDump

Type: plist boolean

Failsafe: false

Requirement: 10.13 (not required for older)

Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

PowerTimeoutKernelPanic

Type: plist boolean

Failsafe: false

Requirement: 10.15 (not required for older)

Description: Disables kernel panic on setPowerState timeout.

An additional security measure was added to macOS Catalina (10.15) causing kernel panic on power change
timeout for Apple drivers. Sometimes it may cause issues on misconfigured hardware, notably digital audio, which
sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

SetApfsTrimTimeout

Type: plist integer

Failsafe: -1

Requirement: 10.14 (not required for older)

Description: Set trim timeout in microseconds for APFS filesystems on SSDs.

The APFS filesystem is designed in a way that the space controlled via the spaceman structure is either used or
free. This may be different in other filesystems where the areas can be marked as used, free, and unmapped. All
free space is trimmed (unmapped/deallocated) at macOS startup. The trimming procedure for NVMe drives
happens in LBA ranges due to the nature of the DSM command with up to 256 ranges per command. The more
fragmented the memory on the drive is, the more commands are necessary to trim all the free space.

Depending on the SSD controller and the drivefragmenation-level of drive fragmenation, the trim procedure
may take a considerable amount of time, causing noticeable boot slowdown The APFS driver explicitly 1gn0res

previously unmapped areas and repeatedly trims them on bootags .
To mitigate against such boot slowdowns, the macOS driver 1ntroduced a tnneout (9. 999999 seconds) that stops

the trim operation when #-didnet-manage-to-eompletenot finished in time. On—many—

On several controllers, such as Samsung, where the deallocation is-net-veryfast;the-timeout-is-process is relatively
Q%Wreached very quickly. Essentially, it means that meeOS-will-try—to-trim-all-the level of

fragmentation is high, thus macOS will attempt to trim the same lower blocks that have already-previously been

33

deallocated, but swil-never have enough time to deallocate higher blocks
means—. The outcome is that trimming on these-such SSDs will be b

extra—wear—to-non-functional soon after mbtallatlon resulting in additional wear on the ﬂash

One way to workaround the problem is to increase the timeout to a—very-an extremely high value, which at the
cost of slow boot times (extra minutes) will ensure that all the blocks are trimmed. F@i—ﬂﬂt—eﬂe—ﬁd—ﬁ—bet—ﬂiﬁset
this option to a high value, e-g—such as 4294967295

Another—wayis—to-wtilise-,_to ensure that all blocks are trimmed. Alternatively, use over-provisioningif-it—is
stupported, if supported, or create a dedicated unmapped partition where the reserve blocks can be found by the
controller. In-this-ease-Conversely, the trim operation can alse-be disabled by setting a very low timeout value.
e.g. 999. See-more-details-in-Refer to this article for more details.

18. ThirdPartyDrives
Type: plist boolean
Failsafe: false
Requirement: 10.6 (not required for older)
Description: Apply vendor patches to IOAHCIBlockStorage.kext to enable native features for third-party drives,
such as TRIM on SSDs or hibernation support on 10.15 and newer.

Note: This option may be avoided on user preference. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce. Starting from 10.15 this
utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID namespace with 01 00 00 00 value.

19. XhciPortLimit
Type: plist boolean
Failsafe: false
Requirement: 10.11 (not required for older)
Description: Patch various kexts (AppleUSBXHCI.kext, AppleUSBXHCIPCI kext, IOUSBHostFamily.kext) to
remove USB port count limit of 15 ports.

Note: This option should be avoided whenever possible —and may no longer function correctly in macOS 11.
USB port limit is imposed by the amount of used bits in locationID format and there is no possible way to
workaround this without heavy OS modification. The only valid solution is to limit the amount of used ports to
15 (discarding some). More details can be found on AppleLife.rul

7.9 Scheme Properties

These properties are particularly relevant for older macOS operating systems. ¥or-mere-Refer to the [Legacy Apple OS|
section for details on how to install and troubleshoot such macOS installation—refer-to-installations.

1. FuzzyMatch
Type: plist boolean
Failsafe: false
Description: Use kernelcache with different checksums when available.

On macOS 10.6 and earlier, kernelcache filename has a checksum, which essentially is adler32 from SMBIOS
product name and EfiBoot device path. On seme-types-ef-certain firmware, the EfiBoot device path differs
between UEFI and macOS due to ACPI or hardware specifics, rendering kernelcache checksum as always
different.

This setting allows matching the latest kernelcache with a suitable architecture when the kernelcache without
suffix is unavailable, improving macOS 10.6 boot performance on several platforms.

2. KernelArch
Type: plist string

Failsafe: Auto (Choose the preferred architecture automaticall

Description: Prefer specified kernel architecture (Aute-1386, 1386-user32, x86_64) when available.

On macOS 10.7 and earlier, the XNU kernel can boot with architectures different from the usual x86_64. This
setting will use the specified architecture to boot macOS when it is supported by the macOS and the configuration:

o 1386 — Use 1386 (32-bit) kernel when available.

34

https://interface31.ru/tech_it/2015/04/mozhno-li-effektivno-ispolzovat-ssd-bez-podderzhki-trim.html
https://github.com/acidanthera/bugtracker/issues/1514
https://applelife.ru/posts/550233

e 1386-user32 — Use 1386 (32-bit) kernel when available and force the use of 32-bit userspace on 64-bit
capable processors if supported by the operating system. On—macOS-

— On macOS§, 64-bit capable processors are assumed to support SSSE3. This is not the case for older 64-bit
capable Pentium processors, which cause some applications to crash on macOS 10.6. This behaviour
corresponds to the -legacy kernel boot argument.

— This option is unavailable fer-on macOS 10.4 and 10.5 when running on 64-bit firmware due to an
uninitialised 64-bit segment in the XNU kernel, which causes AppleEFIRuntime to incorrectly execute
64-bit code as 16-bit code.

e x86_64 — Use x86_64 (64-bit) kernel when available.

-eThe algorithm used to determine the preferred kernel

, Is ,
architecture is set out below.

(a) arch argument in image arguments (e.g. when launched via UEFI Shell) or in boot-args variable overrides
any compatibility checks and forces the specified architecture, completing this algorithm.
(b) OpenCore build architecture restricts capabilities to 1386 and 1386-user32 mode for the 32-bit firmware
variant.
(c) Determined EfiBoot version restricts architecture choice:
e 10.4-10.5 — 1386 or i386-user32 (only on 32-bit firmware)
e 10.6 — 1386, 1386-user32, or x86_64
e 10.7 — 1386 or x86_64
e 10.8 or newer — x86_64
(d) If KernelArch is set to Auto and SSSE3 is not supported by the CPU, capabilities are restricted to
i386-user3?2 if supported by EfiBoot.
(e) Board identifier (from SMBIOS) based on EfiBoot version disables x86_64 support on an unsupported model
if any 1386 variant is supported. Auto is not consulted here as the list is not overridable in EfiBoot.
(f) KernelArch restricts the support to the explicitly specified architecture (when not set to Auto) if the
architecture remains present in the capabilities.
(g) The best supported architecture is chosen in this order: x86_64, 1386, 1386-user32.

Unlike macOS 10.7 —where-se ards-(where certain board identifiers are treated as the 1386 only machines),
and macOS 10.5 or earher Lwhere x86_64 is not supported by the macOS kernel), macOS 10.6 is very special.
The architecture choice on macOS 10.6 depends on many factors including not only the board identifier, but
also the macOS product type (client vs server), macOS point release, and RAM-ameunt-amount of RAM. The
detectlon of %hemﬂ%m is Comphcated and not-praectical-beeause-impractical, as several point releases had

sform-implementation defects resulting in a failure to properly execute the
server detectlon in the ﬁrst place For this reason, OpenCore on macOS 10.6 will-fallback-+to-falls back on the
x86_64 architecture whenever it is supported by the boardat-all-as-, as it is on macOS 10.7. As o reference here
is—the-

A 64-bit Mac model compatibility matrix corresponding to actual EfiBoot behaviour on macOS 10.6.8 and 10.7.5
is outlined helow.

Model 10.6 (minimal) | 10.6 (client) 10.6 (server) 10.7 (any)

Macmini x (Mid 2010) | 5.x (Mid 2011) | 4x (Mid 2010) | 3,x (Early 2009)
MacBook Unsupported Unsupported Unsupported 5,x (2009/09)

MacBookAir Unsupported Unsupported Unsupported x (Late 2008)
MacBookPro 4,x (Early 2008) | 8,x (Early 2011) | 8,x (Early 2011) x (Mid 2007)
Mac 8x (Early 2008) | 12,x (Mid 2011) | 12,x (Mid 2011) | 7,x (Mid 2007)
MacPro 3,x (Early 2008) x (Mid 2010) | 3,x (Early 2008) | 3,x (Early 2008)
Xserve 2,x (Early 2008) | 2,x (Early 2008) | 2,x (Early 2008) | 2,x (Early 2008)

Note: 3+2 and 6+4 hotkeys to choose the preferred architecture are unsupported dueto-being-as they are handled
by EfiBoot and thus-being-hard-to-properly-hence, difficult to detect.

. KernelCache

Type: plist string
Failsafe: Auto
Description: Prefer specified kernel cache type (Auto, Cacheless, Mkext, Prelinked) when available.

Different variants of macOS support different kernel caching variants designed to improve boot performance.

35

This setting prevents the use of faster kernel caching variants if slower variants are available for debugging and

stability reasons. l.e., by specifying Mkext, Prelinked will be disabled for e.g. 10.6 but not for 10.7.

The list of available kernel caching types and its current support in OpenCore is listed below.

macOS | 1386 NC | 1386 MK | 1386 PK | x86_64 NC | x86_64 MK | x86_64 PK | x86_ 64 KC
104 YES | YES (V1) | NO (V1) — — — —
10.5 YES | YES (V1) | NO (V1) = - = —
10.6 YES | YES (V2) | YES (V2) YES YES (V2) YES (V2) —
10.7 YES — YES (V3) YES — YES (V3) —
10.8-10.9 — — — YES — YES (V3) —
10.10-10.15 — — — — — YES (V3) —
11+ — — — — — YES (V3) YES

Note: First-The first version (V1) of the 32-bit prelinkedkernel is unsupported due to the corruption of
kext symbol tables being-eorrtipted-by the tools. On these—versions-this version, the Auto setting will block
prelinkedkernel booting. This also mekes-results in the keepsyms=1 boot argument being non-functional for
kext frames breken-on these systems.

36

8 Misc

8.1 Introduction

This section contalns mlscellaneous conﬁguratlon Maﬁecmng OpenCore operating system loading behaviour as

in addition to other options that do not readily fit into other

OpenCore tries—to—folow-broadly follows the “bless” model, also known as the “Apple Boot Policy”. The primary
speetalty-of-purpose of the “bless” model is to allow embeddlng boot options within the file system (and be accessible
through a specialised driver) as well as supporting a broader range of predefined boot paths as compared to the
removable media list feund-set out in the UEFI specification.

p&rﬁﬁeﬂs—ver‘e}klz’artltlons can onl booted b O enCore When the meet the re ulrements of a redeﬁned Scan polic
ThlS olic sets out Wthh speaﬁc file systems and-from—a partition must have, and which specific device types %c—aﬁ

sensse a partition must be located on, to be made available by OpenCore as a boot option.
MSC&DPMNY property deseriptionfor more details.

k2

sean—The scan process starts with and it ; ey enumerating all available
Wedbnsedontwmm Each partition may pfee}eee»gege@e/vmultlple prlmary and alternate
options. Primary options deseribe-represent operating systems installed on + i seribe-the
media, while alternate options represent recovery options for the operating systems on the media. R—ﬁpﬁ%ﬂe}e—fef
alternate options to-

o Alternate options may exist without primary options and vice versa. Be-warned-that—the-options-
o Options may not necessarily deseribe-the-represent operating systems on the same partition.
o Each primary and alternate option can be an auxiliary option or not;referto-. _

— Refer to the HideAuxiliary section for more details. Adgorithm-

The algorithm to determine boot options behaves as follows:

1. Obtain all available partition handles filtered by—“Sean-peltiey™based on the Scan policy (and driver availability).
2. Obtain all available boot options from the BootOrder UEFI variable.
3. For each feund-boot-eption-boot option found:
o Retrieve the device path of the boot option.
o Perform fixups (e.g. NVMe subtype correction) and expansion (e.g. for Boot Camp) of the device path.
o Obtain the device handle by locating the device path of the resulting device path (ignore it on failure).
o Find-Locate the device handle in the list of partition handles (ignore it if missing).
o For disk device paths (not specifying a bootloader), execute “bless” (may return > 1 entry).
« For file device pathseheek-, check for presence on the file system directly.
e On the OpenCore boot partition, exclude all OpenCore bootstrap files by file header checks.
e Mark device handle as used in the list of partition handles if any.
¢ Register the resulting entries as primary options and determine their types.
The option will become auxiliary for some types (e.g. Apple HFS recovery).
4. For each partition handle:
« If the partition handle is marked as unused, execute “bless” primary option list retrieval.
In case a BlessOverride list is set, ﬂeeeﬁg%ﬁmmmmm “bless” paths will be
foundbit-alse-enston-ones.
e On the OpenCore boot partitionexelude-all-, exclude OpenCore bootstrap files by-using header checks.
o Register the resulting entries as primary options and determine their types if found.
The option will become auxiliary for some types (e.g. Apple HFS recovery).
« If a partition already has any primary options of the “Apple Recovery” typeproeeed-te-, proceed to the next
handle.
o Lookup alternate entries by “bless” recovery option list retrieval and predefined paths.
o Register the resulting entries as alternate auxiliary options and determine their types if found.
5. Custom entries and tools are added as primary options without any checks with respect to Auxiliary.
6. System entriesfe-e—, such as Reset NVRAM)-, are added as primary auxiliary options.

The display order of the boot options in the OpenCore picker and the boot process are determined separately from the
scanning algorithm.

37

The display order as follows:

o Alternate options follow corresponding primary options;i—e- ES
recovery options will follow the relevant macOS option whenever poss1ble
e Options will be listed in file system handle firmware order to maintain an established order across the-reboots
regardless of the ehesen-eperatingsystem—operating system chosen for loading.
o Custom entries, tools, and system entries will be added after all other options.
. Aux1hary optlons will only shew-be displayed upon entering “Advaneed-Extended Mode” in the pieker—{usually
S5 ace”QpenCore picker (typically by pressing the Space key).

—. That is, Apple

The boot process is as follows:

o Try-leoking-tup-Look up the first valid primary option thretgh-in the BootNext UEFI variable.

o On failureloeking-p-, look up the first valid primary option threugh-in the BootOrder UEFI variable.
e Mark the option as the default option to boot.

e Boot option through the picker or without it depending on the ShowPicker option.

e Show picker on failure otherwise.

Note 1: This process is-meant—te-workreliably-only—-when-will only work reliably when the RequestBootVarRouting
option is enabled or the ﬁrmware does not control UEFT boot options (OpenDuetPkg or custom BDS). Witheut

When LauncherOption i at-is not enabled, other operating systems everwrite-OpenCore;makesure

to—enable—it—may overwrite O enCore settm s and this property should therefore be enabled when planning to use
themother operating systems.

Note 2: UEFI variable boot options “boot arguments will be removedif-present—, if present, as they may contain
arguments eempromising-that can compromise the operating system, which is undesired-enee-undesirable when secure
boot is enabled.

Note 3: Some operating systems, namely-Windews—will-ereatetheirsuch as Windows, may create a boot option and

mark it as tep-mest-the topmost option upon first boot or after NVRAM Resetresets from within OpenCore. When
this happens, the default boot entry choice will update-till-remain changed until the next manual reconfiguration.

8.2 Properties

1. Boot
Type: plist dict

Description: Apply the boot configuration described in _the [Boot Properties| section below.

2. BlessOverride
Type: plist array
Description: Add custom scanning paths through the bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders -—fer
examplersuch as \EFI\debian\grubx64.efi for the Debian bootloader. This allows unusaalnon-standard boot
paths to be automatically discovered by the beet-OpenCore picker. Designwise, they are equivalent to predefined
blessed pathpaths, such as \System\Library\CoreServices\boot.efi or \EFI\Microsoft\Boot\bootmgfw.efi,
but unlike predefined bless pathsthey-have-, they have the highest priority.

3. Debug
Type: plist dict
Description: Apply debug configuration described in the [Debug Properties| section below.

4. Entries
Type: plist array
Description: Add boot entries to beet-OpenCore picker.

Designed to be filled with plist dict values, describing each load entry. See the [Entry Properties|section below.

5. Security
Type: plist dict
Description: Apply the security configuration described in the [Security Properties| section below.

6. Tools
Type: plist array

38

Description: Add tool entries to beet-the OpenCore picker.

Designed to be filled with plist dict values, describing each load entry. See the [Entry Properties|section below.

Note: SM@%@W@%MUEFI Shell are-can be <an be very dangerous and MUST
NOT appear in production configurations, es : aticularly in vaulted
configurations as well as those protected by secure boot, as MW be used to easily-bypass

bypass the secure boot chain. Fer-teol-examples-cheek Refer to the [UEF] section of this-deeumentfor examples

Boot Properties

. ConsoleAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for the console.

Fext-The text renderer supports colour arguments as a sum of foreground and background colours aceerding-to
based on the UEFI specification. The value ef-for black background and blaekforegrennd-{for black foreground
04-, is reserved.

List of colour values and names:

e 0x00 — EFI_BLACK

e 0x01 — EFI_BLUE

e 0x02 — EFI_GREEN

e 0x03 — EFI_CYAN

e 0x04 — EFI_RED

e 0x05 — EFI_MAGENTA

e 0x06 — EFI_BROWN

e 0x07 — EFI_LIGHTGRAY

e 0x08 — EFI_DARKGRAY

e 0x09 — EFI_LIGHTBLUE

e 0xOA — EFI_LIGHTGREEN

e 0xOB — EFI_LIGHTCYAN

e 0x0OC — EFI_LIGHTRED

e 0xOD — EFI_LIGHTMAGENTA

e O0xOE — EFI_YELLOW

e O0xOF — EFI_WHITE

e 0x00 — EFI_BACKGROUND_BLACK
e 0x10 — EFI_BACKGROUND_BLUE
e 0x20 — EFI_BACKGROUND_GREEN
e 0x30 — EFI_BACKGROUND_CYAN
o 0x40 — EFI_BACKGROUND_RED

e 0x50 — EFI_BACKGROUND_MAGENTA
e 0x60 — EFI_BACKGROUND_BROWN
e 0x70 — EFI_BACKGROUND_LIGHTGRAY

Note: This option may not work well with the System text renderer. Setting a background different from black
could help testing—proper-GOPfunetioninewith testing GOP functionality.

HibernateMode

Type: plist string

Failsafe: None

Description: Hibernation detection mode. The following modes are supported:

o None — Avoid hibernation (Recommended).
e Auto — Use RTC and NVRAM detection.

e RTC — Use RTC detection.

¢ NVRAM — Use NVRAM detection.

39

3. HideAuxiliary
Type: plist boolean
Failsafe: false

Description: Hides-Set to true to hide auxiliary entries from pieker-menu-by-defaultthe picker menu.

An entry is considered auxiliary when at least one of the following applies:

e Entry is macOS recovery.

e Entry is macOS Time Machine.

o Entry is explicitly marked as Auxiliary.
o Entry is system (e.g. Reset NVRAM).

To s e—display all entries, the picker

menu can be reloaded into “Extended Mode” by pressin the Spacebar key. Hiding auxiliary entries may increase
boot performance fer-multidisk-on multi-disk systems.

4. LauncherOption
Type: plist string
Failsafe: Disabled
Description: Register the launcher option in the firmware preferences for persistence.

Valid values:

e Disabled — do nothing.
e Full — create or update top-prierity-the top priority boot option in UEFI variable storage at bootloader
startup.
— For this option to work, RequestBootVarRouting is required to be enabled.
e Short — create a short boot option instead of a completc one.
— This variant is useful for some older fir 5

handle-types of firmware, typically from Ins de that are unable to manage full device paths

This option prevides-allows integration with third-party operating system installation and ﬁﬁgl‘—&é%&t—t—he—%ﬁﬂe‘b
they-overwrite-upgrades (which may overwrite the \EFI\BOOT\BOOTx64.efi file: —HetS i
in—this—file-path-beeomes—). The BOOTx64.efi file is no longer used for bootstrappmg OpenCore —Eﬂheﬂf a

custom option is created. The custom path used for bootstrapping is-speeified—n—can be specified by usin the
LauncherPath option.

Note 1: Some types of firmware may have fautyNVRAM-defective NVRAM implementation, no boot option
support, or other incompatibilities. While unlikely, the use of this option may evern-cause boot failures —Fhis

option—sheuld-be-used—witheut-any—warranty-and should only be used exclusively on the boards known to be
compatible. Cheek-Refer to Jacidanthera/bugtracker#1222| for some known issues with Haswell and other boards.

Note 2: Be-awarethat-while NVRAM-—reset-While NVRAM resets executed from OpenCore shetld-net-would not
typically erase the boot option created in Bootstrap, executing NVRAM reset-resets prior to loading OpenCore
will remeove-it—Feor-erase the boot option. Therefore, for significant implementation updates (e.g. in OpenCore

0.6.4)makesure—to—perform NVRAM-reset—, an NVRAM reset should be performed with Bootstrap disabled
beforereenablingafter which it can be reenabled.

5. LauncherPath
Type: plist string
Failsafe: Default
Description: Launch path for the LauncherOption property.

Default staysforlaunched-points to OpenCore. ef irany-otherpaths-, User specified paths, e.g. \EFI\LauncherSomeLaunche:
can be used to provide custom loaders, which are supposed to load OpenCore.efi themselves.

6. PickerAttributes
Type: plist integer
Failsafe: 0
Description: Sets specific attributes for the OpenCore picker.

Different OpenCore pickers may be configured through the attribute mask containing OpenCore-reserved
(BITO~BIT15) and OEM-specific (BIT16~BIT31) values.

40

https://github.com/acidanthera/bugtracker/issues/1222

Current OpenCore values include:

e 0x0001 — OC_ATTR_USE_VOLUME_ICON, provides custom icons for boot entries:
For ToolsOpenCeore—will-try—totoad-, OpenCore will attempt loading a custom icon and fallback to the
defanit-icona default icon on failure:
— ResetNVRAM — Resources\Image\ResetNVRAM.icns — ResetNVRAM. icns from icons directory.
— Tools\<TOOL_RELATIVE_PATH>.icns — icon near the tool file with appended .icns extension.

For custom boot EntriesOpenCeore—willtry—totoad—, OpenCore will attempt loading a custom icon and
fallback to the volume icon or the default icon on failure:

— <ENTRY_PATH>.icns — icon near the entry file with appended .icns extension.

For all other entriesOpenCere—will-try—teodoad—, OpenCore will attempt loading a volume icon and-by
searching as follows, and will fallback to the default icon on failure:
— .VolumeIcon.icns file at Preboot volume WW%M
when mounted at the default location within macOS) for APFS (if present).
e bameTaon 1o Bis ot the Peabont soot s soa {/Systan/eumes/Preboat/, when mouted
at_the default location within macOS) for APFS (otherwise).

— .VolumeIcon.icns file at the volume root for other filesystems.

MWMM&W%&&%WWW
system’s Data volume root, /System/Volumes/Data/, when mounted at the default location within macOS.
This approach is flawed: the file is neither accessible to OpenCanopy nor to the Apple picker when FileVault
2, which is meant to be the default choice, is enabled. Therefore, OpenCanopy does not attempt supporting
Apple’s approach. A volume icon file may be placed at the root of the Preboot volume for compatibility with
both OpenCanopy and the Apple picker, or use the Preboot per-volume location as above with OpenCanopy
as a preferred alternative to Apple’s approach.

Note 2: Be aware that using a volume icon on any drive overrides the normal OpenCore picker behaviour
for that drive of selecting the appropriate icon depending on whether the drive is internal or external.

e 0x0002 — OC_ATTR_USE_DISK_LABEL_FILE, provides custom rendered titles for boot entries:
— .disk_label (.disk_label_2x) file near bootloader for all filesystems.
— <TOOL_NAME>.1bl (<TOOL_NAME>.12x) file near tool for Tools.
Prerendered labels can be generated via the disklabel utility or the bless command. When disabled or
missing text labels, (.contentDetails or .disk_label.contentDetails) are to be rendered instead.
e 0x0004 — OC_ATTR_USE_GENERIC_LABEL_IMAGE, provides predefined label images for boot entries without
custom entries. May-This may however give less detail for the actual boot entry.
e 0x0008 — OC_ATTR_HIDE_THEMED_ICONS, prefers builtin icons for certain icon categories to match the theme
style. For example, this could force displaying the builtin Time Machine icon. Requires 0C_ATTR_USE_VOLUME_ICON.
e 0x0010 — OC_ATTR_USE_POINTER_CONTROL, enable-enables pointer control in the OpenCore picker when
available. For example, this could make use of mouse or trackpad to control Ul elements.

7. PickerAudioAssist
Type: plist boolean
Failsafe: false
Description: Enable screen reader by default in beet-the OpenCore picker.

For meaeOS-bootleader-the macOS bootloader, screen reader preference is set in the preferences.efires archive
in the isVOEnabled.int32 file and is controlled by the operating system. For OpenCore screen reader support,
this op option is an independent equivalent. Toggling screen reader support in both OpenCere-boot—picker—and
the OpenCore picker and the macOS bootloader FileVault 2 login window can also be done with-by using the
Command + F5 key combination.

Note: The screen reader requires working audio support;see-. Refer to the [UEFI Audio Properties|section for
more details.

8. PollAppleHotKeys
Type: plist boolean
Failsafe: false
Description: Enable modifier hotkey handling in beet-the OpenCore picker.

41

10.

11.

12.

In addition to action hotkeys which are partlally described in PickerMode section and are normally handled
by Apple BDS, the i S d-by Ip&(ilﬁ&lﬁesham(ﬂwmgmoperatmg system
bootloader —Hme%yLLboot ef 1M These keys allow o -change 8 “hanging the
mevt%by providing different boot modes.

On s —it—certain firmware, using modifier keys may be problematic to-use-modifierkeys-due
to driver 1ncompat1b1htles To workaround this problem, this option allows registering seleet—certain hotkeys in a

more permissive manner from within beet-the OpenCore picker. Such extensions include the-suppoert-of-support
for tapping on keys in addition to holding and pressing Shift along with other keys instead of just-only pressing
the Shift alenekey, which is not detectable on many PS/2 keyboards.

This list of known modifier hotkeys includes:

o CMD+C+MINUS — disable board compatibility checking.

e CMD+K — boot release kernel, similar to kcsuffix=release.
e CMD+S — single user mode.

e CMD+S+MINUS — disable KASLR slide, requires disabled SIP.
e CMD+V — verbose mode.

e Shift — safe mode.

ShowPicker

Type: plist boolean

Failsafe: false

Description: Show simple-beet-a simple picker to allow boot entry selection.

TakeoffDelay
Type: plist integer, 32 bit
Failsafe: 0

Description: Delay in microseconds performed-before-handline—executed before handling the OpenCore picker
startup and action hotkeys.

Introducing a delay may give extra time to hold the right action hotkey sequence toe-g—bootto-, for instance,
boot into recovery mode. On some platforms, setting this option to at-least-a_minimum of 5000-10000 mi-
croseconds may be neeessary-Trequired to access action hotkeys at—all-due to the nature of the keyboard

driver.

Timeout

Type: plist integer, 32 bit

Failsafe: 0

Description: Timeout in seconds in beet-the OpenCore picker before automatic booting of the default boot
entry. Use-O-te-disable-timerSet to 0 to disable.

PickerMode

Type: plist string

Failsafe: Builtin

Description: Choose boeot—picker used for boot management.

Pieker-deseribesPickerMode describes the underlying boot management with an optional user interface responsible
for handling boot options.

The following values are supported:

e Builtin — boot management is handled by OpenCore, a simple text-onlytext-only user interface is used.

o External — an external boot management protocol is used if available. Otherwise, the Builtin mode is
used.

o Apple — Apple boot management is used if available. Otherwise, the Builtin mode is used.

Upon success, the External mode will-may entirely disable all boot management in OpenCore except _for policy
enforcement. In the Apple mode, it may additionally bypass policy enforcement. See-Refer to the [OpenCanopy]
plugin for an example of a custom user interface.

The OpenCore built-in beet-picker contains a set of actions chosen during the boot process. The list of supported
actions is similar to Apple BDS and in-general-typically can be accessed by holding action hotkeys during the
boot process. Currently—the-

42

13.

The following actions are currently considered:

Default — this is the default option, and it lets OpenCore-the built-in beot-picker—+teo-toads-OpenCore
picker load the default boot option as specified in the Startup Disk| preference pane.

ShowPicker — this option forces WMM%H&WWQ@%MWM
This can typically be achieved by holding the OPT key during boot. Setting ShowPicker to true will make
ShowPicker the default option.
ResetNvram — this option per se-erases certain UEFT variables and is normally
MWMWW@WCMD+OPT+P+R key combination during boot. Another
way to erase UEFI variables is to choose Reset NVRAM in the OpenCore picker. This option requires
AllowNvramReset to be set to true.

BootApple — this options performs booting to the first fennd-Apple operating system unless—the-defanlt
ehosen—found unless the chosen default operating system is already—made-by-one from Apple. Hold the X
key down to choose this option.

BootAppleRecovery — this option performs booting te-into the Apple operating system recovery —Either
the-ene-partition. This is either that related to the default chosen operating system, or first found-in—ease
default-ehosen-one found when the chosen default operating system is not made-byApple-or-hasnoreeovery
%WWWMMCMD+R key combination down to choose
this option.

Note 1: Aetivated-The KeySupport OpenUsbeDxe or similar éﬂv%w required for key handlingte

. However, not all of the ke

handlin functions can be im lemented on several types of ﬁrmware.

Note 2: In addition to OPTOpenCeoresupports, OpenCore supports using the Escape key to display the OpenCore
picker when ShowPicker is disabled. This key exists for the Apple picker mode and-forfirmware-with-PS/2

keyboards-as well as for firmware that fail to report held OPT keys and-—requiring-eontinual-on PS/2 keyboards
requiring multiple presses of the Escape key to access the beet-mentOpenCore picker.

Note 8: On Macs with problematic GOP, it may be difficult to access the Apple BeotPiekerpicker. The BootKicker
utility can be blessed to workaround this problem even without loading OpenCore. On some Macs however, the
BootKicker utility cannot be run from OpenCore.

PickerVariant

Type: plist string

Failsafe: Auto

Description: Choose specific icon set to be used for boot management.

The following values are supported:

Auto — Automatically select one set of icons based on the DefaultBackground colour.
Default — Normal icon set (without prefix).

01d — Vintage icon set (01d filename prefix).

Modern — Nouveau icon set (Modern filename prefix).

Other value — Custom icon set if supported by the-installed resources.

Debug Properties

1. AppleDebug

Type: plist boolean

Failsafe: false

Description: Enable writing the boot.efi debug log savingte-to the OpenCore log.

Note: This option only applies to 10.15.4 and newer.

ApplePanic

Type: plist boolean

Failsafe: false

Description: Save macOS kernel panic te-output to the OpenCore root partition.

The file is saved as panic-YYYY-MM-DD-HHMMSS.txt. It is strongly recommended to have-set the keepsyms=1

boot argument to see debug symbols in the panic log. In ease-it—wasnet-presentcases where it is not present, the
kpdescribe.sh utility (bundled with OpenCore) may be used to partially recover the stacktrace.

43

https://support.apple.com/HT202796

Development and debug kernels produce more helpful-kernel-paniesuseful kernel panic logs. Consider download-

ing and installing the KernelDebugKit from developer.apple.com when debugging a problem. To activate a
development kernel, the boot argument kcsuffix=development should be added. Use the uname -a command
to ensure that the current loaded kernel is a development (or a debug) kernel.

In ease-cases where the OpenCore kernel panic saving mechanism swas-is not used, kernel panies-panic logs may
still be found in the /Library/Logs/DiagnosticReports directory.

Starting with macOS Catalina, kernel panics are stored in JSON format ;se-they-and thus need to be preprocessed
before passing to kpdescribe.sh:

cat Kernel.panic | grep macOSProcessedStackshotData |
python -c 'import json,sys;print(json.load(sys.stdin) ["macOSPanicString"])"'

. DisableWatchDog

Type: plist boolean

Failsafe: false

Description: Some types of firmware may not succeed in booting the operating system quickly, especially in
debug mode;whieh-, This results in the watchdog timer aborting the process. This option turns off the watchdog
timer.

. DisplayDelay

Type: plist integer

Failsafe: 0

Description: Delay in microseconds performed-executed after every printed line visible onscreen (i.e. console).

. DisplayLevel

Type: plist integer, 64 bit

Failsafe: 0

Description: EDK II debug level bitmask (sum) showed onscreen. Unless Target enables console (onscreen)
printing, onscreen debug output will not be visible.

The following levels are supported (discover more in DebugLib.h):

e 0x00000002 (bit 1) — DEBUG_WARN in DEBUG, NOOPT, RELEASE.

e 0x00000040 (bit 6) — DEBUG_INFO in DEBUG, NOOPT.

¢ 0x00400000 (bit 22) — DEBUG_VERBOSE in custom builds.

e 0x80000000 (bit 31) — DEBUG_ERROR in DEBUG, NOOPT, RELEASE.

. Seriallnit

Type: plist boolean

Failsafe: false

Description: Perform serial port initialisation.

This option will perform serial port initialisation within OpenCore prior to enabling (any) debug logging. Serial
port configuration is defined via PCDs at compile time in gEfiMdeModulePkgTokenSpaceGuid GUID.

Default values as found in MdeModulePkg.dec are as follows:

e PcdSerialBaudRate — Baud rate: 115200.
e PcdSerialLineControl — Line control: no parity, 8 data bits, 1 stop bit.

See-more-detailsin-Refer to the [Debugging|section for more details.

. SysReport

Type: plist boolean

Failsafe: false

Description: Produce system report on ESP folder.

This option will create a SysReport directory en-in the ESP partition unless it-is-already present. The directory
will contain ACPI, SMBIOS, and audio codec dumps. Audio codec dumps require an audio backend driver to be
loaded.

Note: Ferseeurityreasens'Lo maintain system integrity, the SysReport option is not available in RELEASE builds.
Use a DEBUG buﬂd 1f thls option is neededrequired.

44

https://developer.apple.com
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/Library/DebugLib.h

8. Target
Type: plist integer
Failsafe: 0
Descrlptlon A bltmask (sum) of enabled logging targets. B%éeﬁaﬂ}hx}}%he—}eggaﬁggggg&gv output is hidden 5
ed-to-by default and this option must be set when ; serysuch output is
W%M&u~

The following logging targets are supported:

e 0x01 (bit 0) — Enable logging, otherwise all log is discarded.

e 0x02 (bit 1) — Enable basic console (onscreen) logging.

e 0x04 (bit 2) — Enable logging to Data Hub.

o 0x08 (bit 3) — Enable serial port logging.

o 0x10 (bit 4) — Enable UEFI variable logging.

o 0x20 (bit 5) — Enable nen-velatile-non-volatile UEFI variable logging.
o 0x40 (bit 6) — Enable logging to file.

Console logging prints less than at-the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

s—To obtain Data Hub leg-logs, use the following command in

macOS Note that Data Hub lo S do not lo kernel and kext patches):

ioreg -1w0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFT variable log does not include some messages and has no performance data. Fersafety—reasens-To maintain
system integrity, the log size is limited to 32 kilobytes. Some types of firmware may truncate it much earlier or

drop completely if they have no memory. Using nen-velatile-flag-willwrite-the non-volatile flag will cause the
log to be written to NVRAM flash after every printed line.

To obtain UEFI variable leg-logs, use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-log |
awk '{gsub(/%0d4%0a%00/,"") ;gsub(/%0d%0a/,"\n")}1"

Warning: Seme-types-of-Certain firmware appear to have flawed-defective NVRAM garbage collection. This
means-that-As a result, they may not be able to always free space after varlable deletion. Do not use-nen-velatile

RARAAATET

NVRAMoggine—witheut-extra—need-enable non-volatile NVRAM Io on such devices unless specificall
required.

While the OpenCore boot log already contains basic version information with-including build type and date, this
data-information may also be found in NVRAM-n-the opencore-version variable-even—-with-bootdog-NVRAM

varlable even when boot logging is disabled.

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS.txt at—(in UTC) under the EFI volume
root with log contents (the upper case letter sequence is replaced with date and time from the firmware).
Please be warned that some file system drivers present in firmware are not reliable and may corrupt data when
writing files through UEFI. Log writing is attempted in the safest manner and thus, is very slow. Ensure that
DisableWatchDog is set to true when a slow drive is used. Try to avoid frequent use of this option when dealing
with flash drives as large I/O amounts may speedup-speed up memory wear and render the flash drive unusable
quicker.

When interpreting the log, note that the lines are prefixed with a tag describing the relevant location (module) of
the log line allowing better attribution of the line to the functionality.

The list of currently used tags is previded-belowas follows.
Drivers and tools:

e BMF — OpenCanopy, bitmap font
¢ BS — Bootstrap

e GSTT — GoptStop

e HDA — AudioDxe

45

e KKT — KeyTester

e MMDD — MmapDump

e 0OCPAVP — PavpProvision

e OCRST — ResetSystem

¢ 0CUI — OpenCanopy

¢ 0C — OpenCore main, also OcMainLib
e VMOPT — VerifyMemOpt

Libraries:

e AAPL — OcDebuglogLib, Apple EfiBoot logging
e 0CABC — OcAfterBootCompatLib
e 0OCAE — OcAppleEventLib

e 0CAK — OcAppleKernelLib

e 0CAU — OcAudioLib

e 0CA — OcAcpiLib

e 0CBP — OcAppleBootPolicyLib

e 0CB — OcBootManagementLib

e 0CCL — OcAppleChunkListLib

e 0CCPU — OcCpulLib

e 0CC — OcConsoleLib

e 0CDC — OcDriverConnectionLib
e OCDH — OcDataHubLib

e 0CDI — OcAppleDiskImageLib

e 0OCFS — OcFileLib

e OCFV — OcFirmwareVolumeLib

e OCHS — OcHashServicesLib

e 0CI4 — OcApplelmg4Lib

e 0CIC — OclmageConversionLib

e 0CII — OclnputLib

e 0CJS — OcApfsLib

e 0CKM — OcAppleKeyMapLib

e 0CL — OcDebugLogLib

e 0CMCO — OcMachoLib

e OCME — OcHeciLib

e 0CMM — OcMemoryLib

e OCPE — OcPeCoffLib, OcPeCoffExtLib
e OCPI — OckFileLib, partition info
e OCPNG — OcPngLib

e OCRAM — OcAppleRamDiskLib

e OCRTC — OcRtcLib

e 0CSB — OcAppleSecureBootLib

e 0CSMB — OcSmbiosLib

e 0CSMC — OcSmcLib

e 0CST — OcStorageLib

e 0CS — OcSerializedLib

e OCTPL — OcTemplateLib

e 0CUC — OcUnicodeCollationLib

e 0CUT — OcAppleUserInterfaceThemeLib
e OCXML — OcXmlLib

8.5 Security Properties

1. AllowNvramReset
Type: plist boolean
Failsafe: false
Description: Allow CMD+0PT+P+R handling and enable showing NVRAM Reset entry in beet-OpenCore picker.

46

Note 1: It is known that some Lenovo laptops have a firmware bug, which makes them unbootable after performing
NVRAM reset. See acidanthera/bugtracker#995 for more details.

Note 2: Resetting NVRAM will also erase all-the-beot-options-otherwise-any boot options not backed up with

bless{e—es—Tinux)—using the bless command. For example, Linux installations to custom locations not specified
in BlessOverride

. AllowSetDefault

Type: plist boolean

Failsafe: false

Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in beet-the OpenCore
picker.

. ApECID

Type: plist integer, 64 bit
Failsafe: 0

Description: Apple Enclave Identifier.

Setting this value to any non-zero 64-bit integer will allow using personalised Apple Secure Boot identifiers. To
use this setting, meake-sure-to-generate a random 64-bit number with a cryptographically secure random number
generator. As an alternative, the first 8 bytes of SystemUUID can be used for ApECID, this is found in macOS 11
for Macs without the T2 chip.

With this value set and SecureBootModel valid (and not Disabled), it is possible to achieve Full Security of
Apple Secure Boot.

To start using personalised Apple Secure Boot, the operating system will-haveto-must be reinstalled or personalised.
Unless the operating system is personalised, macOS DMG recovery cannot be loaded. H-In cases where
DMG recovery is missing, it can be downloaded with-by using the macrecovery utility and put—te-saved in

com.apple.recovery.boot as explained inj/bgj | ips an§ !ricEs section. Note that needs to be set
to Signed to use any DMG with Apple Secure Boot.

To personalise an existing operating systemuse-, use the bless command after loading to macOS DMG recovery.

Mount the system volume partition, unless it has already been mounted, and execute the following command:

bless bless --folder "/Volumes/Macintosh HD/System/Library/CoreServices" \
--bootefi --personalize

Before-maecOS-On macOS versions before macOS 11, which introduced a dedicated x861legacy model for models
without the T2 chip, personalised Apple Secure Boot may not work as expected. When reinstalling the operating
system, the macOS Installer from macOS 10.15 and older +—will-usually—will often run out of free memory on
the /var/tmp partition when trying to install macOS with the personalised Apple Secure Boot. Soon after
downloading the macOS installer image, an Unable to verify macOS error message will appear.

To workaround this issue, allocate a dedicated RAM disk of 2 MBs for macOS personalisation by entering the
following commands in the macOS recovery terminal before starting the installation:

disk=$(hdiutil attach -nomount ram://4096)

diskutil erasevolume HFS+ SecureBoot $disk

diskutil unmount $disk

mkdir /var/tmp/0SPersonalizationTemp

diskutil mount -mountpoint /var/tmp/0SPersonalizationTemp $disk

. AuthRestart

Type: plist boolean

Failsafe: false

Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. A dedicated
terminal command can be used to perform authenticated restarts: sudo fdesetup authrestart. It is also used
when installing operating system updates.

47

https://github.com/acidanthera/bugtracker/issues/995
https://support.apple.com/en-us/HT208330

VirtualSMC performs authenticated restart-by-restarts by splitting and saving disk encryption key—split-in-keys
between NVRAM and RTC, which despite being removed as soon as OpenCore starts, may be considered a

security risk and thus is optional.

. BlacklistAppleUpdate

Type: plist boolean

Failsafe: false

Description: Ignore boot options trying to update Apple peripheral firmware (e.g. MultiUpdater.efi).

Note: This-option-exists-dueto-seme-Certain operating systems, namely-such as macOS Big Sur, being-are inca-

pable|of dlsabhng firmware updates MMM%&%@WWW&M

. Dmgloading

Type: plist string

Failsafe: Signed

Description: Define Disk Image (DMG) loading policy used for macOS Recovery.

Valid values:

e Disabled — loading DMG images will fail. The Disabled policy will still let maeOS5Reeovery—to-the
macOS Recovery load in most cases as Fh%eﬂ%ﬂi&bwg@g&mare boot.efi files compatible with
Apple Secure Boot. Manually downloaded DMG images stored in com.apple.recovery.boot directories
will not load, however.

e Signed — only Apple-signed DMG images will load. Due to the design of Apple Secure Bootdesign-, the
Signed policy will let any Apple-signed macOS Recovery te-load regardless of the Apple Secure Boot state,

which may not always be desired. While using signed DMG images is more desirable, verifying the image
signature may slightly slow the boot time down (by up to 1 second).

e Any — any DMG images will mount as normal filesystems. The Any policy is strongly net—recommended
and—will-eatse—a—boot—failure—discouraged and will result in boot failures when Apple Secure Boot is
activatedactive.

. EnablePassword

Type: plist boolean
Failsafe: false
Description: Enable password protection to allew-facilitate sensitive operations.

Password protection ensures that sensitive operations such as booting a non-default operating system (e.g. macOS
recovery or a tool), resetting NVRAM storage, trying to boot into a non-default mode (e.g. verbose mode or safe
mode) are not allowed without explicit user authentication by a custom password. Currently, password and salt
are hashed with 5000000 iterations of SHA-512.

Note: This functionality is eurrently—in—still under development and is not ready for daily—usageproduction

. ExposeSensitiveData

Type: plist integer

Failsafe: 0x6

Description: Sensitive data exposure bitmask (sum) to operating system.

e 0x01 — Expose the printable booter path as an UEFT variable.

e 0x02 — Expose the OpenCore version as an UEFI variable.

o 0x04 — Expose the OpenCore version in beet-the OpenCore picker menu title.
e 0x08 — Expose OEM information as a set of UEFI variables.

Expesed-The exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain
booter-path-the booter path, use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter—pathformountingbooter—volumea booter path to mount a booter volume, use the following

command in macOS:

48

https://github.com/acidanthera/bugtracker/issues/1255
https://github.com/acidanthera/bugtracker/issues/1255

10.

11.

12.

u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([7,I1*\),.*/\1/'); \
if ["$u" !'= ""]; then sudo diskutil mount $u ; fi

To obtain OpenCere-version-the current OpenCore version, use the following command in macOS:
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0opencore-version

To obtain OEM information, use the following commands in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-product # SMBIOS Typel ProductName
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-vendor # SMBIOS Type2 Manufacturer
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-board # SMBIOS Type2 ProductName

HaltLevel

Type: plist integer, 64 bit

Failsafe: 0x80000000 (DEBUG_ERROR)

Description: EDK II debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

PasswordHash

Type: plist data 64 bytes

Failsafe: all zero

Description: Password hash used when EnabledPassword is set.

PasswordSalt

Type: plist data

Failsafe: empty

Description: Password salt used when EnabledPassword is set.

Vault

Type: plist string
Failsafe: Secure
Description: Enables

-ethe OpenCore vaulting mechanism.

Valid values:

e Optional — require nothing, no vault is enforced, insecure.

e Basic — require vault.plist file present in 0C directory. This provides basic filesystem integrity verification
and may protect from unintentional filesystem corruption.

e Secure — require vault.sig signature file for vault.plist in 0OC directory. This includes Basic integrity
checking but also attempts to build a trusted bootchain.

The vault.plist file should contain SHA-256 hashes for all files used by OpenCore. Presenee-The presence of
this file is highly recommended to ensure that unintentional file modifications (including filesystem corruption)
do not h&ppeﬁgwunnotlced To create this file automatlcallyﬁ%% -, use the create_vault.sh script. Regardless

-eh-Notwithstanding the underlying file system, the
Wbetween conflg pllSt and vault plist must match.

The vault.sig file should contain a raw 256 byte RSA-2048 signature from a SHA-256 hash of vault.plist.

The signature is verified against the public key embedded into OpenCore.efi.
To embed the public keyeither—, either one of the following should be performed:

RN AANAAA

e Provide public key during the OpenCore.efi compilation in OpenCoreVault. c|file.
e Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN 0C VAULT= and ==END
0C VAULT== ASCII markers.

The RSA public key 520 byte format description can be found in Chromium OS documentation. To convert the
public key from X.509 certificate or from PEM file use RsaTool.

The complete set of commands to:

e Create vault.plist.

49

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault
https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c
https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault

13.

o Create a new RSA key (always do this to avoid loading old configuration).
e Embed RSA key into OpenCore.efi.
o Create vault.sig.

Can look as follows:

cd /Volumes/EFI/EFI/OC

/path/to/create_vault.sh .

/path/to/RsaTool -sign vault.plist vault.sig vault.pub

off=$(($(strings -a -t d OpenCore.efi | grep "=BEGIN OC VAULT=" | cut -f1 -d' ')+16))
dd of=0OpenCore.efi if=vault.pub bs=1 seek=$0ff count=528 conv=notrunc

rm vault.pub

Note 1: While it may appear obvious, an external method is required to verify OpenCore.efi and BOOTx64.efi
for secure boot path. For this, it is recommended to enable UEFI SecureBoot using a custom certificate and to
sign OpenCore.efi and BO0Tx64.efi with a custom key. More details on customising secure boot on modern
firmware can be found in the Taming UEFI SecureBoot| paper (in Russian).

Note 2: vault.plist and vault.sig are used regardless of this option when vault.plist is present or a public
key is embedded into OpenCore.efi. Setting this option will only ensure configuration sanity, and abort the boot
process otherwise.

ScanPolicy

Type: plist integer, 32 bit

Failsafe: 0x10F0103

Description: Define operating system detection policy.

This value allows te-prevent—preventing scanning (and booting) FHS souree-untrusted sources based
on a bitmask (sum) of seleet-a set of flags. As it is not possible to rehably detect every file system or device type,
this feature cannot be fully relied upon in open environments, and the-additional measures are to be applied.

Third party drivers may introduce additional security (and performance) measures-consideratons following the pro-

vided scan policy. The active Scan policy is exposed in the scan-policy variable of 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B3010:

GUID for UEFI Boot Services only.

e 0x00000001 (bit 0) — OC_SCAN_FILE_SYSTEM_LOCK, restricts scanning to only known file systems defined
as a part of this policy. Flle system drivers may not be aware of this policy;—and-. Hence, to avoid mounting
of undesired file systemst s-driver, drivers for such file systems should not be loaded.
This bit does not affect dﬂ}gDMG mounting, which may have any file system. Known file systems are
prefixed with OC_SCAN_ALLOW_FS_.

e 0x00000002 (bit 1) — OC_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. Fhis-It is not always possible to detect protocol tunneling, so be aware that on some
systems, it may be possible for e.g. USB HDDs to be recognised as SATA instead. Cases like this must be
reported. Known device types are prefixed with 0C_SCAN_ALLOW_DEVICE_.

e 0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.

e 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HFS file system.

e 0x00000400 (bit 10) — OC_SCAN_ALLOW_FS_ESP, allows scanning of EFI System Partition file system.

e 0x00000800 (bit 11) — OC_SCAN_ALLOW_FS_NTFS, allows scanning of NTFS (Msft Basic Data) file system.

e 0x00001000 (bit 12) — OC_SCAN_ALLOW_FS_EXT, allows scanning of EXT (Linux Root) file system.

e 0x00010000 (bit 16) — O0C_SCAN_ALLOW_DEVICE_SATA, allow scanning SATA devices.

e 0x00020000 (bit 17) — 0C_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.

e 0x00040000 (bit 18) — 0C_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.

e 0x00080000 (bit 19) — 0C_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.

)
)
)
)
)

¢ 0x00100000 (bit 20) — 0C_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices and old SATA.

e 0x00200000 (bit 21) — OC_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.

e 0x00400000 (bit 22) — OC_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.

e 0x00800000 (bit 23) — OC_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.

e 0x01000000 (bit 24) — OC_SCAN_ALLOW_DEVICE_PCI, allow scanning devices directly connected to PCI bus
(e.g. VIRTIO).

NN N N N N N N N N N

50

https://habr.com/post/273497/

Note: Given the above description, 0xF6103 value-a value of 0xF0103 is expected to alew-seanning-of-do the

o Permit scanning SATA, SAS, SCSI, and NVMe devices with APFS file s3

systems.
o Prevent scanning any devices with HEF'S or FAT32 file systemsin-additionte-net—.

o Prevent scanning APFS file systems on USB, CD, and FireWire drives.

The combination reads as:

« OC_SCAN_FILE_SYSTEM_LOCK
« 0C_SCAN_DEVICE_LOCK

o OC_SCAN_ALLOW_FS_APFS

o 0OC_SCAN_ALLOW_DEVICE_SATA
o OC_SCAN_ALLOW_DEVICE_SASEX
o 0OC_SCAN_ALLOW_DEVICE_SCSI
e OC_SCAN_ALLOW_DEVICE_NVME

14. SecureBootModel
Type: plist string
Failsafe: Default
Description: Apple Secure Boot hardware model.

Sets Apple Secure Boot hardware model and policy. Specifying this value defines which operating systems will be
bootable. Operating systems shipped before the specified model was released will not boot.

Valid values:

e Default — Recent available model, currently set to j137.

e Disabled — No model, Secure Boot will be disabled.

e j137 — iMacProl,1 (December 2017). Minimum mac0S 10.13.2 (17C2111)

e j680 — MacBookPro15,1 (July 2018). Minimum mac0S 10.13.6 (17G2112)

e j132 — MacBookPro15,2 (July 2018). Minimum mac0S 10.13.6 (17G2112)

e j174 — Macmini8,1 (October 2018). Minimum macOS 10.14 (18A2063)

e jl140k — MacBookAir8,1 (October 2018). Minimum mac0S 10.14.1 (18B2084)
e j780 — MacBookPro15,3 (May 2019). Minimum macOS 10.14.5 (18F132)

e j213 — MacBookPro15,4 (July 2019). Minimum mac0S 10.14.5 (18F2058)

e jl40a — MacBookAir8,2 (July 2019). Minimum macOS 10.14.5 (18F2058)

e j152f — MacBookPro16,1 (November 2019). Minimum macOS 10.15.1 (19B2093)
e j160 — MacPro7,1 (December 2019). Minimum mac0S 10.15.1 (19B88)

e j230k — MacBookAir9,1 (March 2020). Minimum macOS 10.15.3 (19D2064)

e j214k — MacBookPro16,2 (May 2020). Minimum mac0S 10.15.4 (19E2269)

e j223 — MacBookPro16,3 (May 2020). Minimum mac0S 10.15.4 (19E2265)

e j215 — MacBookPro16,4 (June 2020). Minimum macOS 10.15.5 (19F96)

e j185 — iMac20,1 (August 2020). Minimum macOS 10.15.6 (19G2005)

e j185f — iMac20,2 (August 2020). Minimum macOS 10.15.6 (19G2005)

e x86legacy — Macs without T2 chip and VMs. Minimum macOS 11.0.1 (20B29)

Apple Secure Boot appeared in macOS 10.13 on models with T2 chips. Since PlatformInfo and SecureBootModel
are independent, Apple Secure Boot can be used with any SMBIOS with and without T2. Setting SecureBootModel
to any valid value but Disabled is equivalent to Medium Security|of Apple Secure Boot. The ApECID value must
also be specified to achieve Full Security. Check ForceSecureBootScheme when using Apple Secure Boot on
a virtual machine.

Enabling-Note that enabling Apple Secure Boot is # ey-demanding

on invalid configurations, faulty macOS installations, and on unbupported betupb
Things to consider:

(a) As with T2 Macs, unsigned kernel drivers and several signed kernel drivers, including NVIDIA Web Drivers,
cannot be installed.

(b) The list of cached drivers may be different, resulting in hke-a need to change the list of Added or Forced
kernel drivers. For example, I080211Family cannot be injected in this case.

o1

https://support.apple.com/en-us/HT208330

8.6

(c) System volume alterations on operating systems with sealing, such as macOS 11, may result in the operating
system being unbootable. Do not try to disable system volume encryption unless Apple Secure Boot is
disabled.

(d) #-Boot failures might occur when the platform requlres certain settlngs but they l@yvevgngwﬂ)eerwygvk)vlgg
because the associated issues were not ' ‘
failure-might-oeenrdiscovered earlier. Be extra careful with IgnoreInvalldFlexRatlo or HashServ1ces

(e) Operating systems released before Apple Secure Boot landed-was released (e.g. macOS 10.12 or earlier), will
still boot until UEFI Secure Boot is enabled. This is so +beeausefrem-because Apple Secure Boot peint
they-are-treated-treats these as incompatible and WWW handled by the firmware
(as Microsoft Windows is).

(f) On older CPUs (e.g. before Sandy Bridge), enabling Apple Secure Boot might cause slightly slower loading
(by up to 1 second).

(g) Sinee-As the Default value will increase with time to support the latest major zeleasereleased operating
system, it is not recommended to use the ApECID and the Default value-settings together.

(h) Installing macOS with Apple Secure Boot enabled is not possible while using HFS+ target wehumevolumes.
This may include HFS+ formatted drives when no spare APFS drive is available.

Semetimes-the-already-The 1nstalled operatlng system may have sometimes outdated Apple Secure Boot manifests

on the Preboot partitioneas sre-is-, resulting in boot failures. Thls is likely to be the case
when an “OCB: Apple Secure Boot prohlblts thls boot entry, enforcing!” message itis ase—is logged.

When this happens, either reinstall the operating system or copy the manifests (files with .im4m extension, such as
boot.efi.j137.imdm) from /usr/standalone/i386 to /Volumes/Preboot/<UUID>/System/Library/CoreServices.
Here, <UUID> is the system volume identifier. On HFS+ installations, the manifests should be copied to
/System/Library/CoreServices on the system volume.

For more details on how to configure Apple Secure Boot with UEFI Secure Bootrefer—te—, refer to the
300t] section.

Entry Properties

. Arguments

Type: plist string
Failsafe: Emptystrine
Description: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

Auxiliary

Type: plist boolean

Failsafe: false

Description: This-entry-willnot-belisted-by-default-Set to true to hide this entry when HideAuxiliary is also
set to true. Press the Spacebar key to enter “Extended Mode” and display the entry when hidden.

Comment

Type: plist string

Failsafe: Emptystrine

Description: Arbitrary ASCII string used to provide a human readable reference for the entry. H—s

implementation-defined-whether-Whether this value is used is implementation defined.

. Enabled

Type: plist boolean
Failsafe: false
Description:

Set to true activate this entry.
Name

Type: plist string

Failsafe: Emptystring

Description: Human readable entry name displayed in beet-the OpenCore picker.
Path

Type: plist string

52

Failsafe: Emptystrine
Description: Entry location depending on entry type.

o Entries specify external boot options, and therefore take device paths in the Path key. Fhese-Care should be
exercised as these values are not checked;-thus-be-extremely-eareful. Example PciRoot (0x0) /Pci(0x1,0x1)/.../\EFI\
e Tools specify internal boot options, which are part of the bootloader vault, and therefore take file paths
relative to the 0C/Tools directory. Example: OpenShell.efi.

. RealPath

Type: plist boolean
Failsafe: false
Description: Pass full path to the tool when launching.

Passine-This should typically be disabled as passing the tool directory may be unsafe for-teolacecidentally—tryine
with tools that accidentally attempt to access files without checking their integrityand—thus—should-senerally

be-disabled—Reason—. Reasons to enable this property may include cases where tools cannot work without
external files or may need them for betterfunetion{e-g—enhanced functionality such as memtest86 (for logging
and configuration), or Shell (for automatic script execution).

Note: This property is only valid for Tools —Fer-Entries thisproperty-and cannot be specified and-for Entries
(is always true).

. TextMode

Type: plist boolean
Failsafe: false
Description: Run the entry in text mode instead of graphics mode.

This setting may be benefitial-to-beneficial for some older tools that require text output —By—defaunlt-as all the
tools are launched in graphics mode - Read mere-abowt-text-modes-in-by default. Refer to the Output Properties|
section below for information on text modes.

53

9 NVRAM

9.1 Introduction

Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer
to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware
intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID) representing
which ‘section’ NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

+ 4D1EDE05-38C7-4A6A-9CC6-4BCCAS8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
« 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)

+ 8BE4DF61-93CA-11D2-AAOD-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)

+ 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by [PlatformNVRAM] or [Generid subsections of section. Please
ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

For proper macOS functioning it is often required to use OC_FIRMWARE_RUNTIME protocol implementation currently
offered as a part of OpenRuntime driver. While it brings any benefits, there are certain limitations which arise depending
on the use.

1. Not all tools may be aware of protected namespaces.
When RequestBootVarRouting is used Boot-prefixed variable access is restricted and protected in a separate
namespace. To access the original variables tools have to be aware of 0C_FIRMWARE_RUNTIME logic.

9.2 Properties

1. Add
Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist metadatamultidata format. GUIDs must be provided in canonic string format
in upper or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set.
Variables will only be set if not present or deleted. I.e. to overwrite an existing variable value add the variable

name to the Delete section. This approach enables to provide default values till the operating system takes the
lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

2. Delete
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

3. LegacyEnable
Type: plist boolean
Failsafe: false
Description: Enables loading of NVRAM variable file named nvram.plist from EFI volume root.

This file must have root plist dictionary type and contain two fields:

e Version — plist integer, file version, must be set to 1.
e Add — plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to Delete (and Add) phases. Unless LegacyOverwrite is enabled, it will not
overwrite any existing variable. Variables allowed to be set must be specified in LegacySchema. Third-party
scripts may be used to create nvram.plist file. An example of such script can be found in Utilities. The use of
third-party scripts may require ExposeSensitiveData set to 0x3 to provide boot-path variable with OpenCore
EFT partition UUID.

54

https://en.wikipedia.org/wiki/Universally_unique_identifier

Warning: This feature is very dangerous as it passes unprotected data to firmware variable services. Use it only
when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacyOverwrite
Type: plist boolean
Failsafe: false
Description: Permits overwriting firmware variables from nvram.plist.

Note: Only variables accessible from the operating system will be overwritten.

5. LegacySchema
Type: plist dict
Description: Allows setting seleet—certain NVRAM variables from a map (plist dict) of GUIDs to an array
(plist array) of variable names in plist string format.

* value can be used to accept all variables for seleet—certain GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args
or csr-active-config, as this can bypass SIP.

6. WriteFlash
Type: plist boolean
Failsafe: false
Description: Enables writing to flash memory for all added variables.

Note: It is recommended to have this value enabled on most types of firmware but it is left configurable for
firmware that may have issues with NVRAM variable storage garbage collection or similar.

To read NVRAM variable value from macOS, nvram could be used by concatenating GUID and name variables separated
by a : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables|

9.3 Mandatory Variables

Warning: These variables may be added by [PlatformN VRAM] or [Generid subsections of section. Using
PlatformInfo is the recommended way of setting these variables.

The following variables are mandatory for macOS functioning:

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB
BoardSerialNumber. Present on newer Macs (20134 at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM
Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

9.4 Recommended Variables
The following variables are recommended for faster startup or other improvements:

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:csr-active-config
32-bit System Integrity Protection bitmask. Declared in XNU source code in [csr.h.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures
Combined FirmwareFeatures and ExtendedFirmwareFeatures. Present on newer Macs to avoid extra parsing
of SMBIOS tables.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask
Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

55

https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0
https://opensource.apple.com/source/xnu/xnu-4570.71.2/bsd/sys/csr.h.auto.html

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID
Hardware BoardProduct (e.g. Mac-35C1E88140C3E6CF). Not present on real Macs, but used to avoid extra
parsing of SMBIOS tables, especially in boot.efi.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB
Hardware BoardSerialNumber. Override for MLB. Present on newer Macs (20134 at least).

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM
Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).
Serial number. Present on newer Macs (20134 at least).

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:prev-lang:kbd
ASCII string defining default keyboard layout. Format is 1ang-COUNTRY : keyboard, e.g. ru-RU:252 for Russian
locale and ABC keyboard. Also accepts short forms: ru:252 or ru:0 (U.S. keyboard, compatible with 10.9). Full
decoded keyboard list from AppleKeyboardLayouts-L.dat can be found here. Using non-latin keyboard on 10.14
will not enable ABC keyboard, unlike previous and subsequent macOS versions, and is thus not recommended in
case 10.14 is needed.

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:security-mode
ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily source code in
[OFireWireController.cppl It is recommended not to set this variable, which may speedup system startup. Setting
to full is equivalent to not setting the variable and none disables FireWire security.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale
One-byte data defining boot.efi user interface scaling. Should be 01 for normal screens and 02 for HiDPI
screens.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:DefaultBackgroundColor
Four-byte BGRA data defining boot.efi user interface background colour. Standard colours include BFF BF BF
00 (Light Gray) and 00 00 00 00 (Syrah Black). Other colours may be set at user’s preference.

9.5 Other Variables
The following variables may be useful for certain configurations or troubleshooting:

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args

Kernel arguments, used to pass configuration to Apple kernel and drivers. There are many arguments, which
may be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code. Some of the
known boot arguments include:

— acpi_layer=0xFFFFFFFF

— acpi_level=0xFFFF5F (implies ACPI_ALL_COMPONENTS)

— arch=1386 (force kernel architecture to 1386, see KernelArch)

— batman=VALUE (AppleSmartBatteryManager debug mask)

— batman-nosmc=1 (disable AppleSmartBatteryManager SMC interface)

— cpus=VALUE (maximum number of CPUs used)

— debug=VALUE (debug mask)

— 10=VALUE (I0Kit debug mask)

— ioaccel_debug=VALUE (IOAccelerator debug mask)

— keepsyms=1 (show panic log debug symbols)

— kextlog=VALUE (kernel extension loading debug mask)

— nvram-log=1 (enables AppleEFINVRAM logs)

— nv_disable=1 (disables NVIDIA GPU acceleration)

— nvda_drv=1 (legacy way to enable NVIDIA web driver, removed in 10.12)

— npci=0x2000 (legacy, disables kIOPCIConfiguratorPFM64)

— lapic_dont_panic=1 (disable lapic spurious interrupt panic on AP cores)

— panic_on_display_hang=1 (trigger panic on display hang)

— panic_on_gpu_hang=1 (trigger panic on GPU hang)

— slide=VALUE (manually set KASLR slide)

— smcdebug=VALUE (AppleSMC debug mask)

— spin_wait_for_gpu=1 (reduces GPU timeout on high load)

— -amd_no_dgpu_accel (alternative to WhateverGreen’s -radvesa for new GPUs)

— -nehalem_error_disable (disables the AppleTyMCEDriver

— -no_compat_check (disable model checking on 10.7+)

56

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/AppleKeyboardLayouts
https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html
https://github.com/acpica/acpica/blob/master/source/include/acoutput.h
https://www.insanelymac.com/forum/topic/260539-1068-officially-released/?do=findComment&comment=1707972
https://github.com/acidanthera/WhateverGreen

— -s (single mode)

— -v (verbose mode)

— -x (safe mode)
There are multiple external places summarising macOS argument lists: example 1, example 2.
7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg
Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadecimal
64-bit values with or without 0x. At different stages boot.efi will request different debugging (logging) modes
(e.g. after ExitBootServices it will only print to serial). Several booter arguments control whether these requests
will succeed. The list of known requests is covered below:

— 0x00 — INIT.
— 0x01 — VERBOSE (e.g. -v, force console logging).
— 0x02 — EXIT.

— 0x03 — RESET: OK.

— 0x04 — RESET:FAIL (e.g. unknown board-id, hibernate mismatch, panic loop, etc.).

— 0x05 — RESET:RECOVERY.

— 0x06 — RECOVERY.

— 0x07 — REAN:START.

— 0x08 — REAN:END.

— 0x09 — DT (can no longer log to DeviceTree).

— 0x0A — EXITBS:START (forced serial only).

— 0x0B — EXITBS:END (forced serial only).

— 0x0C — UNKNOWN.

In 10.15, debugging support was mestly-breken-before-defective up to the 10.15.4 due-tosomekind-of refactoring
and-release due to refactoring issues as well as the introduction of a new debug protocol. Some of the arguments
and their values below may not be valid for versions prior to 10.15.4. The list of known arguments is covered
below:

— boot-save-log=VALUE — debug log save mode for normal boot.

* 0

* 1

* 2 — (default).

* 3

* 4 — (save to file).

— wake-save-log=VALUE — debug log save mode for hibernation wake.

* 0 — disabled.

* 1

* 2 — (default).

* 3 — (unavailable).

% 4 — (save to file, unavailable).
— breakpoint=VALUE — enables debug breaks (missing in production boot.efi).
% 0 — disables debug breaks on errors (default).
* 1 — enables debug breaks on errors.
— console=VALUE — enables console logging.
* 0 — disables console logging.
* 1 — enables console logging when debug protocol is missing (default).
* 2 — enables console logging unconditionally (unavailable).
— embed-log-dt=VALUE — enables DeviceTree logging.
*x 0 — disables DeviceTree logging (default).
* 1 — enables DeviceTree logging.
— kc-read-size=VALUE — Chunk size used for buffered I/O from network or disk for prelinkedkernel reading
and related. Set to 1MB (0x100000) by default, can be tuned for faster booting,.
— log-level=VALUE — log level bitmask.
* 0x01 — enables trace logging (default).
— serial=VALUE — enables serial logging.
* 0 — disables serial logging (default).
* 1 — enables serial logging for EXITBS:END onwards.
* 2 — enables serial logging for EXITBS:START onwards.
* 3 — enables serial logging when debug protocol is missing.

57

https://osxeon.wordpress.com/2015/08/10/boot-argument-options-in-os-x
https://superuser.com/questions/255176/is-there-a-list-of-available-boot-args-for-darwin-os-x
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleDebugLog.h

10 PlatformInfo

Platform information is comprised of several identification fields generated or filled manually to be compatible with
macOS services. The base part of the configuration may be obtained from AppleModels) which itself generates a set of
interfaces based on a database in [YAML format. These fields are written to three seleet-destinations:

« SMBIOS
e Data Hub
« NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 |[SmBios.h header file.
However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than
one field and/or destination, so there are two ways to control their update process: manual, where all the values are
specified (the default), and semi-automatic, where (Automatic) only seleet—certain values are specified, and later used
for system configuration.

To inspect SMBIOS contents dmidecode utility can be used. Version with macOS specific enhancements can be
downloaded from |Acidanthera/dmidecodel

10.1 Properties

1. Automatic
Type: plist boolean
Failsafe: false
Description: Generate PlatformInfo based on Generic section instead of using values from DataHub, NVRAM,
and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough:

e When enabled SMBIOS, DataHub, and PlatformNVRAM data is unused.
o When disabled Generic section is unused.

Warning: It is strongly dlscouraged t0 set thls optlon to :Ealse when 1ntend1ng to update platform information.
The only reason to do that arso_is if making

minor corrections to SMBIOS values on legacy A le hardware In all other cases ﬂ@f—uﬁﬂg%Automatlc
to false may lead to hard to debug errors, due to inconsistent or invalid settings.

2. CustomMemory
Type: plist boolean
Failsafe: false
Description: Use custom memory configuration defined in the Memory section. This completely replaces any
existing memory configuration in SMBIOS, and is only active when UpdateSMBIOS is set to true.

3. UpdateDataHub
Type: plist boolean
Failsafe: false
Description: Update Data Hub fields. These fields are read from Generic or DataHub sections depending on
Automatic value.

Note: The implementation of the Data Hub protocol in EFT firmware on essentially all systems, including Apple
hardware, means_that_existing Data Hub entries cannot be overridden, while new_entries are added to the
end with macOS ignoring them. This can be worked around by reinstalling the Data Hub protocol using the
ProtocolOverrides section. Refer to the DataHub protocol override description for details.

4. UpdateNVRAM
Type: plist boolean
Failsafe: false
Description: Update NVRAM fields related to platform information.

These fields are read from Generic or PlatformNVRAM sections depending on Automatic value. All the other
fields are to be specified with NVRAM section.

If UpdateNVRAM is set to false the aforementioned variables can be updated with [NVRAM section. If UpdateNVRAM
is set to true the behaviour is undefined when any of the fields are present in NVRAM section.

59

https://github.com/acidanthera/OpenCorePkg/blob/master/AppleModels
https://yaml.org/spec/1.2/spec.html
https://www.dmtf.org/standards/smbios
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Intel/Protocol/DataHub.h
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/SmBios.h
http://www.nongnu.org/dmidecode
https://github.com/acidanthera/dmidecode/releases

5. UpdateSMBIOS
Type: plist boolean
Failsafe: false
Description: Update SMBIOS fields. These fields are read from Generic or SMBIOS sections depending on
Automatic value.

6. UpdateSMBIOSMode
Type: plist string
Failsafe: Create
Description: Update SMBIOS fields approach:

e TryOverwrite — Overwrite if new size is <= than the page-aligned original and there are no issues with
legacy region unlock. Create otherwise. Has issues on some types of firmware.

e Create — Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without
any fallbacks.

e Overwrite — Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size.
Abort with unspecified state otherwise.

¢ Custom — Write SMBIOS tables (gEfiSmbios (3) TableGuid) to g0cCustomSmbios (3) TableGuid to workaround
firmware overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires patch-
ing AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" - "EB9D2D35"
(in ASCII), done automatically by CustomSMBIOSGuid quirk.

Note: A side effect of using Custom approach is making SMBIOS updates exclusive to macOS, avoiding a collision
with existing Windows activation and custom OEM software but potentially breaking-obstructing the operation
of Apple-specific tools.

7. UseRawUuidEncoding
Type: plist boolean
Failsafe: false
Description: Use raw encoding for SMBIOS UUIDs.

Each UUID AABBCCDD-EEFF-GGHH-IIJJ-KKLLMMNNOOPP is essentially a hexadecimal 16-byte number. It can be
encoded in two ways:

e Big Endian — by writing all the bytes as they are without making any order changes ({AA BB CC DD EE FF
GG HH II JJ KK LL MM NN 00 PP}). This method is also known as RFC 4122 encoding or Raw encoding.

o Little Endian — by interpreting the bytes as numbers and using Little Endian byte representation ({DD
CC BB AA FF EE HH GG II JJ KK LL MM NN 0O PP}).

SMBIOS specification did not explicitly specify the encoding format for the UUID up to SMBIOS 2.6, where it
stated that Little Endian encoding shall be used. This led to the confusion in both firmware implementations
and system software as different vendors used different encodings prior to that.

e Apple uses Big Endian format everywhere but it ignores SMBIOS UUID within macOS.

e dmidecode uses Big Endian format for SMBIOS 2.5.x or lower and Little Endian for 2.6 and newer.
Acidanthera dmidecode| prints all the three.

¢ Windows uses Little Endian format everywhere, but it only affects the visual representation of the values.

OpenCore always sets a recent SMBIOS version (currently 3.2) when generating the modified DMI tables. If
UseRawUuidEncoding is enabled, then Big Endian format is used to store the SystemUUID data. Otherwise,
Little Endian is used.

Note: Since UUIDs used in DataHub and NVRAM are not standardised and are added by Apple, this preference
does not affect them. Unlike SMBIOS they are always stored in the Big Endian format.

8. Generic
Type: plist dictionary
Description: Update all fields in Automatic mode.

Note: This section is ignored but may not be removed when Automatic is false.

9. DataHub
Type: plist dictionary
Description: Update Data Hub fields in non-Automatic mode.

60

https://tools.ietf.org/html/rfc4122
https://github.com/acidanthera/dmidecode

Note: This section is ignored and may be removed when Automatic is true.

10. Memory
Type: plist dictionary
Description: Define custom memory configuration.

Note: This section is ignored and may be removed when CustomMemory is false.

11. PlatformNVRAM
Type: plist dictionary
Description: Update platform NVRAM fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

12. SMBIOS
Type: plist dictionary
Description: Update SMBIOS fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

10.2 Generic Properties

1. SpoofVendor
Type: plist boolean
Failsafe: false
Description: Sets SMBIOS vendor fields to Acidanthera.

It is dangerous to use Apple in SMBIOS vendor fields for reasons given in the SystemManufacturer description.
However, certain firmware may not provide valid values otherwise, which could break-obstruct the operation of

some software.

2. AdviseWindows
Type: plist boolean
Failsafe: false
Description: Forces Windows support in FirmwareFeatures.

Added bits to FirmwareFeatures:

o FW_FEATURE_SUPPORTS_CSM_LEGACY_MODE (0x1) - Without this bit it is not possible to reboot to Windows
installed on a drive with EFI partition being not the first partition on the disk.

o FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) - Without this bit it is not possible to reboot to
Windows installed on a drive with EFI partition being the first partition on the disk.

3. MaxBIOSVersion
Type: plist boolean
Failsafe: false
Description: Sets BIOSVersion to 9999.999.999.999.999, recommended for legacy Macs when using Automatic
PlatformInfo to avoid BIOS updates in unofficially supported macOS versions.

4. SystemMemoryStatus
Type: plist string
Failsafe: Auto
Description: Indicates whether system memory is upgradable in PlatformFeature. This controls the visibility
of the Memory tab in About This Mac.

Valid values:

e Auto — use the original PlatformFeature value.
o Upgradable — explicitly unset PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY (Ox2) in PlatformFeature.
o Soldered — explicitly set PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY (0x2) in PlatformFeature.

Note: On certain Mac models{namels—, such as the MacBookPro10,x and any MacBookAir}, SPMemoryRe-
porter.spreporter will ignore PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY and assume that system memory is
non-upgradable.

61

5. ProcessorType
Type: plist integer
Failsafe: 0 (Automatic)
Description: Refer to SMBIOS ProcessorType.

6. SystemProductName
Type: plist string
Failsafe: Empty (OEM specified or not installed)
Description: Refer to SMBIOS SystemProductName.

7. SystemSerialNumber
Type: plist string
Failsafe: Empty (OEM specified or not installed)
Description: Refer to SMBIOS SystemSerialNumber.

Specify special string value OEM to extract current value from NVRAM (SSN variable) or SMBIOS and use it
throughout the sections. This feature can only be used on Mac-compatible firmware,
8. SystemUUID
Type: plist string, GUID
Failsafe: Empty (OEM specified or not installed)
Description: Refer to SMBIOS SystemUUID.

Specify special string value 0EM to extract current value from NVRAM (system-id variable) or SMBIOS and use
it_throughout the sections. Since not every firmware implementation has valid (and unique) values, this feature
is not applicable to some setups, and may provide unexpected results. It is highly recommended to specify the
UUID explicitly. Refer to UseRawUuidEncoding to determine how SMBIOS value is parsed.

9. MLB
Type: plist string
Failsafe: Empty (OEM specified or not installed)
Description: Refer to SMBIOS BoardSerialNumber.

Specify special string value OEM to extract current value from NVRAM (MLB variable) or SMBIOS and use it
throughout the sections. This feature can only be used on Mac-compatible firmware.
10. ROM
Type: plist datamultidata, 6 bytes
Failsafe: Empty (OEM specified or not installed)
Description: Refer to 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :ROM.

Specify special string value 0EM to extract current value from NVRAM (ROM variable) and use it throughout the
sections. This feature can only be used on Mac-compatible firmware.

10.3 DataHub Properties

1. PlatformName
Type: plist string

Failsafe: Not-instaledEmpty (Not installed

Description: Sets name in gEfiMiscSubClassGuid. Value-The value found on Macs is platform in ASCIL

2. SystemProductName
Type: plist string
Failsafe: Net-installedEmpty (Not installed)
Description: Sets Model in gEfiMiscSubClassGuid. Value-The value found on Macs is equal to SMBIOS
SystemProductName in Unicode.

3. SystemSerialNumber
Type: plist string

Failsafe: Not-installedEmpty (Not installed

Description: Sets SystemSerialNumber in gEfiMiscSubClassGuid. Vakhie-The value found on Macs is equal
to SMBIOS SystemSerialNumber in Unicode.

62

4. SystemUUID
Type: plist string, GUID
Failsafe: Not-installedEmpty (Not installed)
Description: Sets system-id in gEfiMiscSubClassGuid. Valae-The value found on Macs is equal to SMBIOS
SystemUUID (with swapped byte order).

5. BoardProduct
Type: plist string
Failsafe: Net-installedEmpty (Not installed)
Description: Sets board-id in gEfiMiscSubClassGuid. Valae-The value found on Macs is equal to SMBIOS
BoardProduct in ASCII.

6. BoardRevision
Type: plist data, 1 byte
Failsafe: 0
Description: Sets board-rev in gEfiMiscSubClassGuid. Valwe-The value found on Macs seems to correspond
to internal board revision (e.g. 01).

7. StartupPowerEvents
Type: plist integer, 64-bit
Failsafe: 0
Description: Sets StartupPowerEvents in gEfiMiscSubClassGuid. Value-The value found on Macs is power
management state bitmask, normally 0. Known bits read by X86PlatformPlugin.kext:

e 0x00000001 — Shutdown cause was a PWROK event (Same as GEN_PMCON_2 bit 0)

e 0x00000002 — Shutdown cause was a SYS_PWROK event (Same as GEN_PMCON_2 bit 1)

e 0x00000004 — Shutdown cause was a THRMTRIP# event (Same as GEN_PMCON_2 bit 3)

e 0x00000008 — Rebooted due to a SYS_RESET# event (Same as GEN_PMCON_2 bit 4)

¢ 0x00000010 — Power Failure (Same as GEN_PMCON_3 bit 1 PWR_FLR)

e 0x00000020 — Loss of RTC Well Power (Same as GEN_PMCON_3 bit 2 RTC_PWR_STS)

e 0x00000040 — General Reset Status (Same as GEN_PMCON_3 bit 9 GEN_RST_STS)

o Oxfffff£80 — SUS Well Power Loss (Same as GEN_PMCON_3 bit 14)

e 0x00010000 — Wake cause was a ME Wake event (Same as PRSTS bit 0, ME_WAKE_STS)

e 0x00020000 — Cold Reboot was ME Induced event (Same as PRSTS bit 1 ME_HRST_COLD_STS)
e 0x00040000 — Warm Reboot was ME Induced event (Same as PRSTS bit 2 ME_HRST_WARM_STS)
e 0x00080000 — Shutdown was ME Induced event (Same as PRSTS bit 3 ME_HOST_PWRDN)

e 0x00100000 — Global reset ME Watchdog Timer event (Same as PRSTS bit 6)

e 0x00200000 — Global reset PowerManagement Watchdog Timer event (Same as PRSTS bit 15)

8. InitialTSC
Type: plist integer, 64-bit
Failsafe: 0
Description: Sets InitialTSC in gEfiProcessorSubClassGuid. Sets initial TSC value, normally 0.

9. FSBFrequency
Type: plist integer, 64-bit
Failsafe: 0 (Automatic)
Description: Sets FSBFrequency in gEfiProcessorSubClassGuid.

Sets CPU FSB frequency. This value equals to CPU nominal frequency divided by CPU maximum bus ratio and
is specified in Hz. Refer to MSR_NEHALEM_PLATFORM_INFO (CEh) MSR value to determine maximum bus ratio on
modern Intel CPUs.

Note: This value is not used on Skylake and newer but is still provided to follow suit.

10. ARTFrequency
Type: plist integer, 64-bit
Failsafe: 0 (Automatic)
Description: Sets ARTFrequency in gEfiProcessorSubClassGuid.

This value contains CPU ART frequency, also known as crystal clock frequency. Its existence is exclusive to the
Skylake generation and newer. The value is specified in Hz, and is normally 24 MHz for client Intel segment, 25

63

11.

12.

13.

14.

MHz for server Intel segment, and 19.2 MHz for Intel Atom CPUs. macOS till 10.15 inclusive assumes 24 MHz
by default.

Note: On Intel Skylake X ART frequency may be a little less (approx. 0.25%) than 24 or 25 MHz due to special
EMI-reduction circuit as described in |Acidanthera Bugtracker.

DevicePathsSupported

Type: plist integer, 32-bit

Failsafe: Net-installed0 (Not installed)

Description: Sets DevicePathsSupported in gEfiMiscSubClassGuid. Must be set to 1 for AppleACPIPlat-
form.kext to append SATA device paths to Boot#### and efi-boot-device-data variables. Set to 1 on all
modern Magcs.

SmcRevision

Type: plist data, 6 bytes

Failsafe: Net-installedEmpty (Not installed)

Description: Sets REV in gEf iMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC REV key.

SmcBranch

Type: plist data, 8 bytes

Failsafe: Net-installedEmpty (Not installed)

Description: Sets RBr in gEf iMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC RBr key.

SmcPlatform

Type: plist data, 8 bytes

Failsafe: Net-installedEmpty (Not installed)

Description: Sets RP1t in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to
generate SMC RP1t key.

10.4 Memory Properties

1.

DataWidth

Type: plist integer, 16-bit

Failsafe: OxFFFF (unknown)

SMBIOS: Memory Device (Type 17) — Data Width

Description: Specifies the data width, in bits, of the memory. A DataWidth of 0 and a TotalWidth of 8
indicates that the device is being used solely to provide 8 error-correction bits.

Devices

Type: plist array

Failsafe: Empty

Description: Specifies the custom memory devices to be added.

Designed to be filled with plist dictionary values, describing each memory device. See the [Memory Devices|
section below. This should include all memory slots, even if unpopulated.

ErrorCorrection

Type: plist integer, 8-bit

Failsafe: 0x03

SMBIOS: Physical Memory Array (Type 16) — Memory Error Correction

Description: Specifies the primary hardware error correction or detection method supported by the memory.

¢ 0x01 — Other

e 0x02 — Unknown

e 0x03 — None

e 0x04 — Parity

e 0x05 — Single-bit ECC
¢ 0x06 — Multi-bit ECC
e 0x07 — CRC

64

https://github.com/acidanthera/bugtracker/issues/448#issuecomment-524914166

10.4.1 Memory Device Properties

1. AssetTag
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Asset Tag
Description: Specifies the asset tag of this memory device.

2. BankLocator
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Bank Locator
Description: Specifies the physically labeled bank where the memory device is located.

3. DeviceLocator
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Device Locator
Description: Specifies the physically-labeled socket or board position where the memory device is located.

4. Manufacturer
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Manufacturer
Description: Specifies the manufacturer of this memory device.

5. PartNumber
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Part Number
Description: Specifies the part number of this memory device.

6. SerialNumber
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Serial Number
Description: Specifies the serial number of this memory device.

7. Size
Type: plist integer, 32-bit
Failsafe: 0
SMBIOS: Memory Device (Type 17) — Size
Description: Specifies the size of the memory device, in megabytes. 0 indicates this slot is not populated.

8. Speed
Type: plist integer, 16-bit
Failsafe: 0
SMBIOS: Memory Device (Type 17) — Speed
Description: Specifies the maximum capable speed of the device, in megatransfers per second (MT/s). 0
indicates an unknown speed.

10.5 PlatformNVRAM Properties

1. BID
Type: plist string
Failsafe: NetinstaledEmpty (Not installed

Description: Specifies the value of NVRAM variable 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :HW_BID.

2. ROM
Type: plist data, 6 bytes

Failsafe: Not-installedEmpty (Not installed

66

Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :ROM.

3. MLB
Type: plist string
Failsafe: Not-installedEmpty (Not installed)
Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 : MLB.

4. FirmwareFeatures
Type: plist data, 8 bytes

Failsafe: Not-installedEmpty (Not installed

Description: This variable comes in pair with FirmwareFeaturesMask. Specifies the values of NVRAM variables:

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures

5. FirmwareFeaturesMask
Type: plist data, 8 bytes

Failsafe: Not-installedEmpty (Not installed

Description: This variable comes in pair with FirmwareFeatures. Specifies the values of NVRAM variables:

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
¢ 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask

6. SystemSerialNumber

Failsafe: Empty (Not installed

Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW SSN and

7. SystemUUID
Type: plist string
Failsafe: Net-installedEmpty (Not installed

Description: Specifies the value of NVRAM variable 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:system-id
for boot services only. Valtue-The value found on Macs is equal to SMBIOS SystemUUID.

10.6 SMBIOS Properties

1. BIOSVendor
Type: plist string
Failsafe: OEM-speeifiedEmpty (OEM specified)
SMBIOS: BIOS Information (Type 0) — Vendor
Description: BIOS Vendor. All rules of SystemManufacturer do apply.

2. BIOSVersion
Type: plist string
Failsafe: OEM-speeifiedEmpty (OEM specified)
SMBIOS: BIOS Information (Type 0) — BIOS Version
Description: Firmware version. This value gets updated and takes part in update delivery configuration and
macOS version compatibility. This value could look like MM71.88Z.0234.B00.1809171422 in older firmware and
is described in Biosld.h. In newer firmware, it should look like 236.0.0.0.0 or 220.230.16.0.0 (iBridge:
16.16.2542.0.0,0). iBridge version is read from BridgeOSVersion variable, and is only present on macs with

T2.

Apple ROM Version

BIOS ID: MBP151.88Z.F000.B00.1811142212
Model: MBP151

EFI Version: 220.230.16.0.0

Built by: root@quinoa

Date: Wed Nov 14 22:12:53 2018
Revision: 220.230.16 (B&I)

67

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Guid/BiosId.h

10.

ROM Version: FOO0O_BOO
Build Type: Official Build, RELEASE

Compiler: Apple LLVM version 10.0.0 (clang-1000.2.42)
UUID: E5D1475B-29FF-32BA-8552-682622BA42E1

UUID: 151B0907-10F9-3271-87CD-4BF5DBECACFS
BIOSReleaseDate

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: BIOS Information (Type 0) — BIOS Release Date

Description: Firmware release date. Similar to BIOSVersion. May look like 12/08/2017.

SystemManufacturer

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: System Information (Type 1) — Manufacturer

Description: OEM manufacturer of the particular board. Shall-net-be-speeified-Use failsafe unless strictly
required. Shetld-not Do not override to contain Apple Inc. on non-Apple hardware, as this confuses numerous
services present in the operating system, such as firmware updates, eficheck, as well as kernel extensions developed
in Acidanthera, such as Lilu and its plugins. In addition it will also make some operating systems such as Linux
unbootable.

SystemProductName

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: System Information (Type 1), Product Name

Description: Preferred Mac model used to mark the device as supported by the operating system. This value
must be specified by any configuration for later automatic generation of the related values in this and other
SMBIOS tables and related configuration parameters. If SystemProductName is not compatible with the target
operating system, -no_compat_check boot argument may be used as an override.

Note: If SystemProductName is unknown, and related fields are unspecified, default values should be assumed as
being set to MacPro6,1 data. The list of known products can be found in AppleModels.

SystemVersion

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: System Information (Type 1) — Version

Description: Product iteration version number. May look like 1.1.

SystemSerialNumber

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: System Information (Type 1) — Serial Number

Description: Product serial number in defined format. Known formats are described in macserial.

SystemUUID

Type: plist string, GUID

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: System Information (Type 1) — UUID

Description: A UUID is an identifier that is designed to be unique across both time and space. It requires no
central registration process.

SystemSKUNumber

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: System Information (Type 1) — SKU Number

Description: Mac Board ID (board-id). May look like Mac-7BA5B2D9E42DDD94 or Mac-F221BEC8 in older
models. Sometimes it can be just empty.

SystemFamily
Type: plist string

68

https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macserial/FORMAT.md

Failsafe: OFEM-speeifiedEmpty (OEM specified
SMBIOS: System Information (Type 1) — Family

Description: Family name. May look like iMac Pro.

. BoardManufacturer

Type: plist string

Failsafe: OFEM-speeifiedEmpty (OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) - Manufacturer

Description: Board manufacturer. All rules of SystemManufacturer do apply.

. BoardProduct

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: Baseboard (or Module) Information (Type 2) - Product

Description: Mac Board ID (board-id). May look like Mac-7BA5B2D9E42DDD94 or Mac-F221BEC8 in older
models.

. BoardVersion

Type: plist string

Failsafe: OEM-speeiiedEmpty (OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) - Version

Description: Board version number. Varies, may match SystemProductName or SystemProductVersion.

. BoardSerialNumber

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: Baseboard (or Module) Information (Type 2) — Serial Number

Description: Board serial number in defined format. Known formats are described in macserial.

. BoardAssetTag

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: Baseboard (or Module) Information (Type 2) — Asset Tag

Description: Asset tag number. Varies, may be empty or Type2 - Board Asset Tag.

. BoardType

Type: plist integer

Failsafe: OEM-speeified0 (OEM specified)

SMBIOS: Baseboard (or Module) Information (Type 2) — Board Type

Description: Either 0xA (Motherboard (includes processor, memory, and I/O) or 0xB (Processor/Memory
Module), refer to Table 15 — Baseboard: Board Type for more details.

. BoardLocationInChassis

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: Baseboard (or Module) Information (Type 2) — Location in Chassis
Description: Varies, may be empty or Part Component.

. ChassisManufacturer

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: System Enclosure or Chassis (Type 3) — Manufacturer
Description: Board manufacturer. All rules of SystemManufacturer do apply.

. ChassisType
Type: plist integer

Failsafe: OEM-speeitied0 (OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Type

Description: Chassis type, refer to Table 17 — System Enclosure or Chassis Types for more details.

. ChassisVersion
Type: plist string

69

https://github.com/acidanthera/macserial/blob/master/FORMAT.md

21.

22.

23.

24.

25.

26.

27.

Failsafe: OFEM-speeifiedEmpty (OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Version

Description: Should match BoardProduct.

ChassisSerialNumber

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)
SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match SystemSerialNumber.

ChassisAssetTag

Type: plist string

Failsafe: OEM-speeifiedEmpty (OEM specified)

SMBIOS: System Enclosure or Chassis (Type 3) — Asset Tag Number
Description: Chassis type name. Varies, could be empty or MacBook-Aluminum.

PlatformFeature

Type: plist integer, 32-bit

Failsafe: 0xFFFFFFFF (OEM specified on Apple hardware, do not provide the table otherwise

SMBIOS: APPLE_SMBIOS_TABLE_TYPE133 - PlatformFeature

Description: Platform features bitmask. Refer to AppleFeatures.hl for more details. Use-0xFFFFFFFE valueto

noet-provide-thistableMissing on older Macs.

SmcVersion

Type: plist data, 16 bytes

Failsafe: All zero (OEM specified on Apple hardware, do not provide the table otherwise)

SMBIOS: APPLE_SMBIOS_TABLE_TYPE134 - Version

Description: ASCII string containing SMC version in upper case. Missing on T2 based Macs. lgnored—when
FEFO—

FirmwareFeatures

Type: plist data, 8 bytes

Failsafe: 0 (OEM specified on Apple hardware, 0 otherwise

SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeatures and ExtendedFirmwareFeatures
Description: 64-bit firmware features bitmask. Refer to AppleFeatures.h for more details. Lower 32 bits match
FirmwareFeatures. Upper 64 bits match ExtendedFirmwareFeatures.

FirmwareFeaturesMask

Type: plist data, 8 bytes

Failsafe: 0 (OEM specified on Apple hardware, 0 otherwise

SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask
Description: Supported bits of extended firmware features bitmask. Refer to AppleFeatures.h for more details.
Lower 32 bits match FirmwareFeaturesMask. Upper 64 bits match ExtendedFirmwareFeaturesMask.

ProcessorType

Type: plist integer, 16-bit

Failsafe: 0 (Automatic)

SMBIOS: APPLE_SMBIOS_TABLE_TYPE131 - ProcessorType
Description: Combined of Processor Major and Minor types.

Automatic value generation tries to provide most accurate value for the currently installed CPU. When this fails
please make sure to create an [issuel and provide sysctl machdep.cpu and dmidecode|output. For a full list of
available values and their limitations (the value will only apply if the CPU core count matches) refer to Apple
SMBIOS definitions header herel

70

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/bugtracker/issues
https://github.com/acidanthera/dmidecode
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleSmBios.h

11 UEFI

11.1 Introduction

UEFT (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITooll and supplementary
utilities can be used.

11.2 Drivers

Depending on the firmware a different set of drivers may be required. Loading an incompatible driver may lead the
system to unbootable state or even cause permanent firmware damage. Some of the known drivers are listed below:

71

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases

11.3 Tools and Applications

Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below. While some
tools can be launched from within OpenCore, see more details in the subsection of the configuration, most should
be run separately either directly or from Shell.

To boot into OpenShell or any other tool directly save OpenShell.efi under the name of EFI\BOOT\BOOTX64.EFI on
a FAT32 partition. hageneralit-is-1t is typically unimportant whether the partition scheme is GPT or MBR.

While the previous approach works both on Macs and other computers, an alternative Mac-only approach to bless the
tool on an HFS+ or APFS volume:

sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
—--folder /Volumes/VOLNAME/DIR/ --setBoot

Listing 3: Blessing tool

Note 1: /System/Library/CoreServices/BridgeVersion.bin should be copied to /Volumes/VOLNAME/DIR.
Note 2: To be able to use the bless command, disabling System Integrity Protection is necessary.
Note 3: To be able to boot [Secure Boot| might be disabled if present.

Some of the known tools are listed below (builtin tools are marked with *):

BootKicker® Enter Apple BootPicker menu (exclusive for Macs with compatible GPUs).

ChipTune* Test BeepGen protocol and generate audio signals of different style and length.

CleanNvram* Reset NVRAM alternative bundled as a standalone tool.

GopStop™* Test GraphicsOutput protocol with a simple scenariol

KeyTester®™ Test keyboard input in SimpleText mode.

MemTest86 Memory testing utility.

OpenControl®* Unlock and lock back NVRAM protection for other tools to be able to get full NVRAM
access when launching from OpenCore.

OpenShell* OpenCore-configured UEFI Shell|for compatibility with a broad range of firmware.

PavpProvision Perform EPID provisioning (requires certificate data configuration).

ResetSystem™ Utility to perform system reset. Takes reset type as an argument: ColdReset, Firmware,
Shutdown, WarmReset. Defaults to ColdReset.

RtcRw* Utility to read and write RTC (CMOS) memory.

VerifyMsrE2* Check CFG Lock (MSR 0xE2 write protection) consistency across all cores.

11.4 OpenCanopy

OpenCanopy is a graphical OpenCore user interface that runs in External PickerMode and relies on |(OpenCorePkg
OcBootManagementLib similar to the builtin text interface.

OpenCanopy requires graphical resources located in Resources directory to run. Sample resources (fonts and images)
can be found in (OcBinaryData repository. Customised icons can be found over the internet (e.g. here or there).

OpenCanopy provides full support for PickerAttributes and offers a configurable builtin icon set. The default chosen
icon set depends on the DefaultBackgroundColor variable value. For Light Gray 01d icon set will be used, for other
colours — the one without a prefix.

Predefined icons are W&M \EFI\DC\Resources\Image directory. Fat-A full list of supported icons (in
.icns format) is provided below. Miss se-When optional icons are missing, the closest available
icon will be used. External entries will use Ext- preﬁxed icon if available (e.g. 01dExtHardDrive. 1cns)

Note: In the following all dimensions are normative for the 1x scaling level and shall be scaled accordingly for other
levels.

e Cursor — Mouse cursor (mandatory, up to 144x144).

o Selected — Selected item (mandatory, 144x144).

e Selector — Selecting item (mandatory, up to 144x40).
o Left — Scrolling left (mandatory, 40x40).

e Right — Scrolling right (mandatory, 40x40).

o HardDrive — Generic OS (mandatory, 128x128).

73

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://support.apple.com/HT208330
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg/tree/master/Application/GopStop
https://github.com/acidanthera/OpenCorePkg
https://www.memtest86.com
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
http://github.com/tianocore/edk2
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/blackosx/OpenCanopyIcons
https://applelife.ru/threads/kastomizacija-opencanopy.2945020/

Background — Centred background image.

Apple — Apple OS (128x128).

AppleRecv — Apple Recovery OS (128x128).

AppleTM — Apple Time Machine (128x128).

Windows — Windows (128x128).

Other — Custom entry (see Entries, 128x128).

ResetNVRAM — Reset NVRAM system action or tool (128x128).
Shell — Entry with UEFT Shell name for e.g. OpenShell (128x128).
Tool — Any other tool (128x128).

Predefined labels are put—+te-saved in the \EFI\OC\Resources\Label directory. Each label has .1bl or .12x suffix to
represent the scaling level. Full list of labels is provided below. All labels are mandatory.

EFIBoot — Generic OS.

Apple — Apple OS.

AppleRecv — Apple Recovery OS.

AppleTM — Apple Time Machine.

Windows — Windows.

Other — Custom entry (see Entries).

ResetNVRAM — Reset NVRAM system action or tool.
Shell — Entry with UEFI Shell name (e.g. OpenShell).
Tool — Any other tool.

Note: All labels must have a height of exactly 12 px. There is no limit for their width.

Label and icon generation can be performed with bundled utilities: disklabel and icnspack. Font is Helvetica 12 pt
times scale factor.

Font format corresponds to|AngelCode binary BMF. While there are many utilities to generate font files, currently it is
recommended to use |[dpFontBaker to generate bitmap font (using CoreText produces best results) and fonverter to
export it to binary format.

11.5 OpenRuntime

OpenRuntime is an OpenCore plugin implementing 0C_FIRMWARE_RUNTIME protocol. This protocol implements multiple
features required for OpenCore that are otherwise not possible to implement in OpenCore itself as they are needed to
work in runtime, i.e. during operating system functioning. Feature highlights:

NVRAM namespaces, allowing to isolate operating systems from accessing select variables (e.g. RequestBootVarRouting
or ProtectSecureBoot).

Read-only and write-only NVRAM variables, enhancing the security of OpenCore, Lilu, and Lilu plugins, such as
VirtualSMC, which implements AuthRestart support.

NVRAM isolation, allowing to protect all variables from being written from an untrusted operating system (e.g.
DisableVariableWrite).

UEFI Runtime Services memory protection management to workaround read-only mapping (e.g. EnableWriteUnprotector).

11.6 Properties

1.

APFS

Type: plist dict

Failsafe: None

Description: Provide APFS support as configured in the [APF'S Properties| section below.

Audio

Type: plist dict

Failsafe: None

Description: Configure audio backend support described in the [Audio Properties| section below.

Audio support provides a way for upstream protocols to interact with the selected hardware and audio resources.
All audio resources should reside in \EFI\OC\Resources\Audio directory. Currently the supported audio file

74

https://www.angelcode.com/products/bmfont
https://github.com/danpla/dpfontbaker
https://github.com/danpla/dpfontbaker/pull/1
https://github.com/usr-sse2/fonverter

formats are MP3 and WAVE PCM. While it is driver-dependent which audio stream format is supported, most
common audio cards support 16-bit signed stereo audio at 44100 or 48000 Hz.

Audio file path is determined by audio type, audio localisation, and audio path. Each filename looks as follows:
[audio type]_[audio localisation]_[audio path].[audio ext]. For unlocalised files filename does not
include the language code and looks as follows: [audio type]_[audio path].[audio ext]. Audio extension
can either be mp3 or wav.

e Audio type can be 0CEFIAudio for OpenCore audio files or AXEFTAudio for macOS bootloader audio files.

o Audio localisation is a two letter language code (e.g. en) with an exception for Chinese, Spanish, and
Portuguese. Refer to APPLE_VOICE_OVER_LANGUAGE_CODE definition for the list of all supported localisations.

e Audio path is the base filename corresponding to a file identifier. For macOS bootloader audio paths refer to
APPLE_VOICE_OVER_AUDIO_FILE definition. For OpenCore audio paths refer to|0C_VOICE_OVER_AUDIO_FILE
definition. The only exception is OpenCore boot chime file, which is 0CEFTAudio_VoiceOver_Boot.mp3.

Audio localisation is determined separately for macOS bootloader and OpenCore. For macOS bootloader it is
set in preferences.efires archive in systemLanguage.utf8 file and is controlled by the operating system. For
OpenCore the value of prev-lang:kbd variable is used. When native audio localisation of a particular file is
missing, English language (en) localisation is used. Sample audio files can be found in |OcBinaryData repository.

. ConnectDrivers

Type: plist boolean

Failsafe: false

Description: Perform UEFI controller connection after driver loading.

This option is useful for loading drivers following UEFI driver model as they may not start by themselves.
Examples of such drivers are filesystem or audio drivers. While effective, this option may not be necessary for
drivers performing automatic connection, and may slightly slowdown the boot.

Note: Some types of firmware, particularly those made by Apple, only connect the boot drive to speed up the
boot process. Enable this option to be able to see all the boot options when running multiple drives.

. Drivers

Type: plist array
Failsafe: None
Description: Load selected drivers from 0C/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFT drivers.

. Input

Type: plist dict

Failsafe: None

Description: Apply individual settings designed for input (keyboard and mouse) in the [Input Properties|section
below.

. Output

Type: plist dict

Failsafe: None

Description: Apply individual settings designed for output (text and graphics) in the [Output Properties|section
below.

. ProtocolOverrides

Type: plist dict

Failsafe: None

Description: Force builtin versions of sefeet-certain protocols described in the [ProtocolOverrides Properties|
section below.

Note: all protocol instances are installed prior to driver loading.

. Quirks

Type: plist dict

Failsafe: None

Description: Apply individual firmware quirks described in the [Quirks Properties| section below.

75

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OcBinaryData

9. ReservedMemory

Type: plist array

Description: Designed to be filled with plist dict values, describing memory areas exquisite to particular
firmware and hardware functioning, which should not be used by the operating system. An example of such
memory region could be second 256 MB corrupted by Intel HD 3000 or an area with faulty RAM. See the
[ReservedMemory Properties| section below.

11.7 APFS Properties

1.

EnableJumpstart

Type: plist boolean

Failsafe: false

Description: Load embedded APFS drivers from APFS containers.

APFS EFI driver is bundled in all bootable APFS containers. This option performs loading of signed APFS
drivers with respect to ScanPolicy. See more details in “EFI Jumpstart” section of Apple File System Reference.

GlobalConnect

Type: plist boolean

Failsafe: false

Description: Perform full device connection during APFS loading.

Instead of partition handle connection normally used for APFS driver loading every handle is connected recursively.
This may take more time than usual but can be the only way to access APFS partitions on some types of firmware
such as those on older HP laptops.

HideVerbose

Type: plist boolean

Failsafe: false

Description: Hide verbose output from APFS driver.

APFS verbose output can be useful for debugging.

JumpstartHotPlug

Type: plist boolean

Failsafe: false

Description: Load APFS drivers for newly connected devices.

Performs APFS driver loading not only at OpenCore startup but also during beet-the OpenCore picker. This
permits APFS USB hot plug. Disable if not required.

MinDate

Type: plist integer

Failsafe: 0

Description: Minimal allowed APFS driver date.

APFS driver date connects APFS driver with the calendar release date. Older versions of APFS drivers may
contain unpatched vulnerabilities, which can be used to inflict harm to the computer. This option permits
restricting APF'S drivers to only recent releases.

e 0 — require the default supported release date of APFS in OpenCore. The default release date will increase
with time and thus this setting is recommended. Currently set to 2018/06/21.

e -1 — permit any release date to load (strongly discouraged).

o Other — use custom minimal APFS release date, e.g. 20200401 for 2020/04/01. APFS release dates can be
found in OpenCore boot log and OcApfsLibl

MinVersion

Type: plist integer

Failsafe: 0

Description: Minimal allowed APFS driver version.

APFS driver version connects APFS driver with the macOS release. APFS drivers from older macOS releases will
become unsupported and thus may contain unpatched vulnerabilities, which can be used to inflict harm to the
computer. This option permits restricting APFS drivers to only modern macOS versions.

76

https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h

11.8

e 0 — require the default supported version of APFS in OpenCore. The default version will increase with
time and thus this setting is recommended. Currently set to the latest point release from High Sierra from
App Store (748077008000000).

e -1 — permit any version to load (strongly discouraged).

e Other — use custom minimal APFS version, e.g. 1412101001000000 from macOS Catalina 10.15.4. APFS
versions can be found in OpenCore boot log and 0cApfsLibl

Audio Properties

. AudioCodec

Type: plist integer
Failsafe: 0
Description: Codec address on the specified audio controller for audio support.

Normally this contains first audio codec address on the builtin analog audio controller (HDEF). Audio codec
addresses, e.g. 2, can be found in the debug log (marked in bold-italic):

0CAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot (0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot (0x0)/Pci(0x1B,0x0)/VenlMsg(<redacted>,02000000) (7 outputs)

As an alternative this value can be obtained from IOHDACodecDevice class in I/O Registry containing it in
I0HDACodecAddress field.

AudioDevice
Type: plist string
Failsafe: empty-stringEmpty

Description: Device path of the specified audio controller for audio support.

Normally this contains builtin analog audio controller (HDEF) device path, e.g. PciRoot (0x0) /Pci(0x1b,0x0).
The list of recognised audio controllers can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot (0x0)/Pci(0x1,0x0)/Pci(0x0,0x1) /VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot (0x0)/Pci(0x3,0x0) /VenMsg(<redacted>,00000000) (1 outputs)
0CAU: 3/3 PciRoot (0x0)/Pci(0x1B,0x0) /VenMsg(<redacted>,02000000) (7 outputs)

As an alternative gfxutil -f HDEF command can be used in macOS. Specifying empty device path will result in
the first available audio controller to be used.

AudioQOut

Type: plist integer

Failsafe: 0

Description: Index of the output port of the specified codec starting from 0.

Normally this contains the index of the green out of the builtin analog audio controller (HDEF). The number of
output nodes (N) in the debug log (marked in bold-italic):

0CAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
0CAU: 2/3 PciRoot (0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

The quickest way to find the right port is to bruteforce the values from 0 to N - 1.

AudioSupport

Type: plist boolean

Failsafe: false

Description: Activate audio support by connecting to a backend driver.

Enabling this setting routes audio playback from builtin protocols to a dedicated audio port (AudioQOut) of the
specified codec (AudioCodec) located on the audio controller (AudioDevice).

MinimumVolume

Type: plist integer

Failsafe: 0

Description: Minimal heard volume level from 0 to 100.

7

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h

Screen reader will use this volume level, when the calculated volume level is less than MinimumVolume. Boot
chime sound will not play if the calculated volume level is less than MinimumVolume.

6. PlayChime
Type: plist string
Failsafe: Auto
Description: Play chime sound at startup.

Enabling this setting plays boot chime through builtin audio support. Volume level is determined by MinimumVolume
and VolumeAmplifier settings and SystemAudioVolume NVRAM variable. Possible values include:

e Auto — Enables chime when StartupMute NVRAM variable is not present or set to 00.
e Enabled — Enables chime unconditionally.
e Disabled — Disables chime unconditionally.

Note: Enabled can be used in separate from StartupMute NVRAM variable to avoid conflicts when the firmware
is able to play boot chime.

7. ResetTrafficClass

Type: plist boolean

Description: Set HDA Traffic Class Select Register to TCO.

AppleHDA kext will function correctly only if TCSEL register is configured to use TCO traffic class. Refer to Intel
1/0 Controller Hub 9 (ICH9) Family Datasheet (or any other ICH datasheet) for more details about this register.

Note: This option is independent from AudioSupport. If AppleALC is used it is preferred to use AppleALC
alctsel property instead.
8. SetupDelay
Type: plist integer
Failsafe: 0
Description: Audio codec reconfiguration delay in microseconds.

Some codecs require a vendor- spec1ﬁc delay after the reconﬁguratlon (e.g. volume setting). This option makes it
configurable. 3 F s-A typical delay can be up to 0.5 seconds.

9. VolumeAmplifier
Type: plist integer
Failsafe: 0
Description: Multiplication coefficient for system volume to raw volume linear translation from 0 to 1000.

Volume level range read from SystemAudioVolume varies depending on the codec. To transform read value in
[0, 127] range into raw volume range [0, 100] the read value is scaled to VolumeAmplifier percents:

System AudioV olume x V olume Ampli fier
100

RawVolume = MIN(,100)

Note: the transformation used in macOS is not linear, but it is very close and this nuance is thus ignored.

11.9 Input Properties

1. KeyFiltering
Type: plist boolean
Failsafe: false
Description: Enable keyboard input sanity checking.

Apparently some boards such as the GA Z77P-D3 may return uninitialised data in EFI_INPUT_KEY with all input
protocols. This option discards keys that are neither ASCII, nor are defined in the UEFT specification (see tables
107 and 108 in version 2.8).

2. KeyForgetThreshold
Type: plist integer

78

Failsafe: 0
Description: Remove key unless it was submitted during this timeout in milliseconds.

AppleKeyMapAggregator protocol is supposed to contain a fixed length buffer of currently pressed keys. However,
the majority of the drivers only report key presses as interrupts and pressing and holding the key on the keyboard
results in subsequent submissions of this key with some defined time interval. As a result we use a timeout to
remove once pressed keys from the buffer once the timeout expires and no new submission of this key happened.

This option allows to set this timeout based on the platform. The recommended value that works on the majority
of the platforms is 5 milliseconds. For reference, holding one key on VMware will repeat it roughly every 2
milliseconds and the same value for APTIO V is 3-4 milliseconds. Thus it is possible to set a slightly lower value
on faster platforms and slightly higher value on slower platforms for more responsive input.

Pressing keys one after the other results in delays of at least 6 and 10 milliseconds for the same platforms.

Note: Some platforms may require different values, higher or lower. For example, when detecting key misses in
OpenCanopy try increasing this value (e.g. to 10), and when detecting key stall, try decreasing this value. Since
every platform is different it may be reasonable to check every value from 1 to 25.

. KeySupport

Type: plist boolean

Failsafe: false

Description: Enable internal keyboard input translation to AppleKeyMapAggregator protocol.

This option activates the internal keyboard interceptor driver, based on AppleGenericInputaka—{, also known
as AptioInputFix}, to fill AppleKeyMapAggregator database for input functioning. In case a separate driver is

used, such as OpenUsbKbDxe, this option should never be enabled.

. KeySupportMode

Type: plist string

Failsafe: Auto

Description: Set internal keyboard input translation to AppleKeyMapAggregator protocol mode.

e Auto — Performs automatic choice as available with the following preference: AMI, V2, V1.
e V1 — Uses UEFI standard legacy input protocol EFI_SIMPLE_TEXT_INPUT_PROTOCOL.

e V2 — Uses UEFI standard modern input protocol EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.
e AMI — Uses APTIO input protocol AMI_EFIKEYCODE_PROTOCOL.

Note: Currently V1, V2, and AMI unlike Auto only do filtering of the particular specified protocol. This may
change in the future versions.

. KeySwap

Type: plist boolean

Failsafe: false

Description: Swap Command and Option keys during submission.

This option may be useful for keyboard layouts with Option key situated to the right of Command key.

. PointerSupport

Type: plist boolean

Failsafe: false

Description: Enable internal pointer driver.

79

This option implements standard UEFI pointer protocol (EFI_SIMPLE_POINTER_PROTOCOL) through seleet-certain
OEM protocols. The option may be useful on Z87 ASUS boards, where EFI_SIMPLE_POINTER_PROTOCOL is
brokendefective.

8. PointerSupportMode
Type: plist string
Failsafe: emptystringEmpty

Description: Set OEM protocol used for internal pointer driver.

Currently the only supported variant is ASUS, using specialised protocol available on seleet-certain Z87 and Z97
ASUS boards. More details can be found in LongSoft/UefiTool#116. The value of this property cannot be
empty if PointerSupport is enabled.

9. TimerResolution
Type: plist integer
Failsafe: 0
Description: Set architecture timer resolution.

This option allows to update firmware architecture timer period with the specified value in 100 nanosecond units.
Setting a lower value generally improves performance and responsiveness of the interface and input handling.

The recommended value is 50000 (5 milliseconds) or slightly higher. Select ASUS Z87 boards use 60000 for the
interface. Apple boards use 100000. In case of issues, this option can be left as 0.

11.10 Owutput Properties

1. TextRenderer
Type: plist string
Failsafe: BuiltinGraphics
Description: Chooses renderer for text going through standard console output.

Currently two renderers are supported: Builtin and System. System renderer uses firmware services for text
rendering. Builtin bypassing firmware services and performs text rendering on its own. Different renderers
support a different set of options. It is recommended to use Builtin renderer, as it supports HiDPI mode and
uses full screen resolution.

UEFT firmware generally supports ConsoleControl with two rendering modes: Graphics and Text. Some types
of firmware do not support ConsoleControl and rendering modes. OpenCore and macOS expect text to only be
shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by UEFI specification,
exact behaviour varies.

Valid values are combinations of text renderer and rendering mode:

e BuiltinGraphics — Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.
e BuiltinText — Switch to Text mode and use Builtin renderer with custom ConsoleControl.

e SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.

e SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.

e SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms it is necessary to enable
ProvideConsoleGop, set Resolution to Max. BuiltinText variant is an alternative BuiltinGraphics for
some very old and buggy-defective laptop firmware, which can only draw in Text mode.

The use of System protocols is more complicated. In-general-Typically, the preferred setting is SystemGraphics
or SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, namely—such as the MacPro5,1, may have broken—eonsele-output—with-newer-incompatible
console output when using modern GPUs, and thus only BuiltinGraphics may work for them in such cases.
NVIDIA GPUs may require additional firmware upgrades.

2. ConsoleMode
Type: plist string

80

https://github.com/LongSoft/UEFITool/pull/116
https://github.com/acidanthera/bugtracker/issues/1280

Failsafe: Empty string(Maintain current console mode

Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string.

Set to e Max to try—te—use-attempt using the largest available

console mode GﬂﬂefrﬂsFThls 0 tlon is currentl ignored as the Builtin text renderer supperts—enly—only
supports one console mode;—se—this *

Note: This field is best left empty on most types of firmware.

. Resolution
Type: plist string

Failsafe: Empty string(Maintain current screen resolution

Description: Sets console output screen resolution.

o Set to WxH@Bpp (e.g. 1920x1080@32) or WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if avallable

e Set to

e Set-to-Max to W@%&@MM@&W‘Marg%t avallable screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in Builtin text renderer, FileVault 2 UEFI password interface, and boot screen logo. Refer to the
[Recommended Variables| section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop set to true.

. ForceResolution

Type: plist boolean

Failsafe: false

Description: Forces Resolution to be set in cases where the desired resolution is not available by default, such
as on legacy Intel GMA and first generation Intel HD Graphics (Ironlake/Arrandale). Setting Resolution to Max
will try to pull the largest available resolution from the connected display’s EDID.

Note: This option depends on the 0C_FORCE_RESOLUTION_PROTOCOL protocol being present. This protocol is
currently only supported by OpenDuetPkg. The OpenDuetPkg implementation currently only supports Intel
iGPUs.

. ClearScreenOnModeSwitch

Type: plist boolean

Failsafe: false

Description: Some types of firmware only clear part of the screen when switching from graphics to text mode,
leaving a fragment of previously drawn images visible. This option fills the entire graphics screen with black
colour before switching to text mode.

Note: This option only applies to System renderer.

. DirectGopRendering

Type: plist boolean

Failsafe: false

Description: Use builtin graphics output protocol renderer for console.

n seme-types-of-certain firmware, such as on the MacPro5, 1, this may provide better performance or fix rendering
issues. However, this option is not recommended unless there is an obvious benefit as it may result in issues such
as slower scrolling.

. GopPassThrough

Type: plist boolean

Description: Provide GOP protocol instances on top of UGA protocol instances.
This option provides the GOP protocol via a UGA-based proxy for firmware that do not implement the protocol.

Note: This option requires ProvideConsoleGop to be enabled.

81

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcForceResolution.h

10.

11.

12.

13.

IgnoreTextInGraphics

Type: plist boolean

Failsafe: false

Description: Some types of firmware output text onscreen in both graphics and text mode. This is typically
unexpected as random text may appear over graphical images and cause Ul corruption. Setting this option to
true will discard all text output when console control is in a different mode from Text.

Note: This option only applies to the System renderer.

ReplaceTabWithSpace

Type: plist boolean

Failsafe: false

Description: Some types of firmware do not print tab characters or everything that follows them, causing
difficulties in using the UEFI Shell’s builtin text editor to edit property lists and other documents. This option
makes the console output spaces instead of tabs.

Note: This option only applies to System renderer.

ProvideConsoleGop

Type: plist boolean

Failsafe: false

Description: Ensure GOP (Graphics Output Protocol) on console handle.

macOS bootloader requires GOP or UGA (for 10.4 EfiBoot) to be present on console handle, yet the exact
location of the graphics protocol is not covered by the UEFI specification. This option will ensure GOP and
UGA, if present, are available on the console handle.

Note: This option will also replace breken-GOP-pretecoton-incompatible implementations of GOP on the console
handle, shieh-as may be the case on the MacPro5, 1 with-newer-when using modern GPUs.

ReconnectOnResChange

Type: plist boolean

Failsafe: false

Description: Reconnect console controllers after changing screen resolution.

On seme-types-of-certain firmware, the controllers that produce the console protocols (simple text out) must be
reconnected when the screen resolution is changed via GOP. Otherwise, they will not produce text based on the
new resolution.

Note: On several boards this logic may result in black screen when launching OpenCore from Shell and thus it is
optional. In versions prior to 0.5.2 this option was mandatory and not configurable. Please do not use this unless
required.

SanitiseClearScreen

Type: plist boolean

Failsafe: false

Description: Some types of firmware reset screen resolutions to a failsafe value (such as 1024x768) on the
attempts to clear screen contents when large display (e.g. 2K or 4K) is used. This option attempts to apply a
workaround.

Note: This option only applies to the System renderer. On all known affected systems, ConsoleMode had-to-must
be set to an empty string for this option to work.

UgaPassThrough

Type: plist boolean

Failsafe: false

Description: Provide UGA protocol instances on top of GOP protocol instances.

Some types of firmware do not implement the legacy UGA protocol but this may be required for screen output by
older EFT applications such as EfiBoot from 10.4.

82

11.11 ProtocolOverrides Properties

1.

AppleAudio

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces Apple audio protocols with builtin versions.

Apple audio protocols allow macOS bootloader and OpenCore to play sounds and signals for screen reading or
audible error reporting. Supported protocols are beep generation and VoiceOver. VoiceOver protocol is specific to
Gibraltar machines (T2) and is not supported before macOS High Sierra (10.13). Instead older macOS versions
use AppleHDA protocol, which is currently not implemented.

Only one set of audio protocols can be available at a time, so in order to get audio playback in OpenCore user
interface on Mac system implementing some of these protocols this setting should be enabled.

Note: Backend audio driver needs to be configured in UEFI Audio section for these protocols to be able to stream
audio.

AppleBootPolicy

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Apple Boot Policy protocol with a builtin version. This may be used to
ensure APFS compatibility on VMs er-and legacy Macs.

Note: SemeMaes—naamely—This option is advisable on certain Macs, such as the MacPro5,1, do—-haveAPES
eompatibiity—but—their—that are APFS com atlble but on which the Apple Boot Policy protocol eontains-has

recovery detection issues

AppleDebuglog

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Apple Debug Log protocol with a builtin version.

AppleEvent

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Apple Event protocol with a builtin version. This may be used to ensure
File-Vault-FileVault 2 compatibility on VMs er-and legacy Macs.

AppleFramebufferInfo

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Apple Framebuffer Info protocol with a builtin version. This may be used
to override framebuffer information on VMs er-and legacy Macs to improve compatibility with legacy EfiBoot
such as the one in macOS 10.4.

roperty results in it only being active when GOP is available

Note: The current implementation of this
always equivalent to false otherwise).

AppleImageConversion

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Apple Image Conversion protocol with a builtin version.

AppleImgd4Verification

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Apple IMG4 Verification protocol with a builtin version. This protocol is
used to verify im4m manifest files used by Apple Secure Boot.

AppleKeyMap

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces Apple Key Map protocols with builtin versions.

83

10.

11.

12.

13.

14.

15.

16.

AppleRtcRam

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Apple RTC RAM protocol with a builtin version.

Note: Builtin version of Apple RTC RAM protocol may filter out I/O attempts to seleet-certain RTC memory
addresses. The list of addresses can be specified in 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:rtc-blacklist
variable as a data array.

AppleSecureBoot

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Apple Secure Boot protocol with a builtin version.

AppleSmcIo

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Apple SMC I/O protocol with a builtin version.

This protocol replaces legacy VirtualSmc UEFI driver, and is compatible with any SMC kernel extension.
However, in case FakeSMC kernel extension is used, manual NVRAM key variable addition may be needed.

AppleUserInterfaceTheme

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Apple User Interface Theme protocol with a builtin version.

DataHub

Type: plist boolean

Failsafe: false

Description: Reinstalls-Replaces the Data Hub protocol with a builtin version. This—will-delete-all-previous

Note: This will discard all previous entries if the protocol was already installed, so all properties required for
safe operation of the system must be specified in your configuration.

DeviceProperties

Type: plist boolean

Failsafe: false

Descrlptlon R%&%&MDevme Property protocol with a builtin version. This will-delete—all
g : € S s-may be used to ensure full compatibility on VMs er-and

legacy Macs.

Note: This will discard all previous entries if the protocol was already installed, so all properties required for
safe operation of the system must be specified in your configuration.

FirmwareVolume

Type: plist boolean

Failsafe: false

Description: Fereibly—wraps-Wraps Firmware Volume protocols or installs new-a new version to support custom
cursor images for File-Vault-FileVault 2. Sheuld-beset-Set to true to ensure File-Vault-FileVault 2 compatibility

WW%%VMS and legacy Macs.

Note: Several virtual machines including VMware may have corrupted cursor image-images in HiDPI mode and
thus, may also require this-setting-to-be-enabledenabling this setting.

HashServices

Type: plist boolean

Failsafe: false

Description: Fereiblyreinstalls-Replaces Hash Services protocols with builtin versions. Sheuld-be-set-Set to
true to ensure File-Vault-FileVault 2 compatibility on platforms previding-breken-with defective SHA-1 hashing-

Can-be-diagnosed-by-hash im implementations. This can be determined by an invalid cursor size with-when UIScale

84

17.

18.

is set to 027ingeneral-platforms—prior+o—. Platforms earlier than APTIO V (Haswell and older) are typically
affected.

0SInfo

Type: plist boolean

Failsafe: false

Description: Fereibly—reinstalls—Replaces the OS Info protocol with builtin—versionsa builtin version. This

protocol is geﬂe%aﬂ%ﬁﬁefkt ically used by the ﬁrmware and other applications to receive notifications from
/ b; : ieattonsthe macOS bootloader.

UnicodeCollation

Type: plist boolean

Failsafe: false

Description: Foreibly—reinstalls-Replaces unicode collation services Wlth builtin vefs&oﬁ%houlé—be—s%versmns.

Set to true to ensure UEFI Shell compatibility on platforms

}eg&ﬁwah defective unicode collation implementations. Legacy Insyde and APTIO platforms on Ivy Brldge&ﬂé
earher-are-, and earlier, are typically affected.

11.12 Quirks Properties

1.

ActivateHpetSupport
Type: plist boolean

Description: Activates HPET support.

Older boards like ICH6 may not always have HPET setting in the firmware preferences, this option tries to force
enable it.

DisableSecurityPolicy

Type: plist boolean

Failsafe: false

Description: Disable platform security policy.

Note: This setting disables various security features of the firmware, defeating the purpose of any kind of Secure
Boot. Do NOT enable if you-wuse-using UEFI Secure Boot.

ExitBootServicesDelay

Type: plist integer

Failsafe: 0

Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very rough workaround to circumvent the Still waiting for root device message on some APTIO
IV firmware (ASUS Z87-Pro) particularly when using FileVault 2. It appears that for some reason, they execute
code in parallel to EXIT_BOOT_SERVICES, which results in the SATA controller being inaccessible from macOS. A
better approach %MMSWWCMMWWMW Expect 3 to
5 seconds to be adequate when this quirk is needed.

. IgnoreInvalidFlexRatio

Type: plist boolean

Failsafe: false

Description: Some types of firmware (such as APTIO IV) may contain invalid values in the MSR_FLEX_RATIO
(0x194) MSR register. These values may cause macOS boot failures on Intel platforms.

Note: While the option is not expected to harm unaffected firmware, its use is enlyrecommended—when—itis
recommended only when specifically required.

ReleaseUsbOwnership

Type: plist boolean

Failsafe: false

Description: Attempt to detach USB controller ownership from the firmware driver. While most types of
firmware manage to do that-this properly, or at least have an option for this, some do not. As a result, the
operating system may freeze upon boot. Not recommended unless specifically required.

85

6. RequestBootVarRouting
Type: plist boolean
Failsafe: false
Description: Request redirect of all Boot prefixed variables from EFI_GLOBAL_VARIABLE_GUID to
OC_VENDOR_VARIABLE_GUID.

This quirk requires 0C_FIRMWARE_RUNTIME protocol implemented in OpenRuntime.efi. The quirk lets default
boot entry preservation at times when the firmware deletes incompatible boot entries. In summary, this quirk is
required to reliably use the |Startup Disk preference pane in firmware that is not compatible with macOS boot
entries by design.

By redirecting Boot prefixed variables to a separate GUID namespace with the help of RequestBootVarRouting
quirk we achieve multiple goals:

e Operating systems are jailed and only controlled by OpenCore boot environment to enhance security.

¢ Operating systems do not mess with OpenCore boot priority, and guarantee fluent updates and hibernation
wakes for cases that require reboots with OpenCore in the middle.

 Potentially incompatible boot entries, such as macOS entries, are not deleted or anyhew-eorrupted-corrupted

in any way.

7. TscSyncTimeout
Type: plist integer
Failsafe: 0
Description: Attempts to perform TSC synchronisation with a specified timeout.

The primary purpose of this quirk is to enable early bootstrap TSC synchronisation on some server and laptop
models when running a debug XNU kernel. For the debug kernel the TSC needs to be kept in sync across the cores
before any kext could kick in rendering all other solutions problematic. The timeout is specified in microseconds
and depends on the amount of cores present on the platform, the recommended starting value is 500000.

This is an experimental quirk, which should only be used for the aforementioned problem. In all other cases,
the quirk may render the operating system unstable and is not recommended. The recommended solution in
the other cases is to install a kernel driver such as |[VoodooTSCSync, [TSCAdjustReset, or CpuTscSync (a more
specialised variant of VoodooTSCSync for newer laptops).

Note: Thereason—this-This quirk cannot replace the kernel driver is-because it cannot operate in ACPI S3 mede
(sleep wake) mode and because the UEFI firmware only provides very limited multicore support preventing-the

preeise-update-which prevents precise updates of the MSR registers.
8. UnblockFsConnect
Type: plist boolean

Failsafe: false
Description: Some types of firmware block partition handles by opening them in By Driver mode, resulting in

beine-unable-an inability to install File System protocols.

Note:
WMMS’

This quirk is useful in cases where

11.13 ReservedMemory Properties

1. Address
Type: plist integer
Failsafe: 0
Description: Start address of the reserved memory region, which should be allocated as reserved effectively
marking the memory of this type inaccessible to the operating system.

The addresses written here must be part of the memory map, have a EfiConventionalMemory type, and be
page-aligned (4 KBs).

Note: Some types of firmware may not allocate memory areas used by S3 (sleep) and S4 (hibernation) code unless
CSM is enabled causing wake failures. After comparing the memory maps with CSM disabled and enabled, these
areas can be found in the lower memory and can be fixed up by doing the reservation. See Sample.plist for
more details.

86

https://support.apple.com/HT202796
https://github.com/RehabMan/VoodooTSCSync
https://github.com/interferenc/TSCAdjustReset
https://github.com/lvs1974/CpuTscSync

12 Troubleshooting

12.1 Legacy Apple OS

Older operating systems may be more complicated to install, but sometimes can be necessary to use for all kinds of
reasons. While a compatible board identifier and CPUID are the obvious requirements for proper functioning of an
older operating system, there are many other less obvious things to consider. This section tries to cover a common set
of issues relevant to installing older macOS operating systems.

While newer operating systems can be downloaded over the 1nternet older operatlng systems did not have installation

media for every minor release;s > > ‘ —te-. For compatible dlstrlbutlons of
such, download a device-specific unage and mod-m M1t if necessary. %ge%khe\/mt this archlved A le Su

artlcle for a list of the bundled device-specific builds for legacy operating systems

Sﬂppef&&&e}eﬁ%meeﬂ{—}ﬁ—ﬁet—alwa{;% However, as this may not always be accurate, the latest versions are listed
below.

12.1.1 macOS 10.8 and 10.9

o Disk images on these systems use Apple Partitioning Scheme and require OpenPartitionDxe driver to run DMG
recovery and installation (included in OpenDuet). It is possible to set Dmgloading to Disabled to run the
recovery without DMG loading avoiding the need for OpenPartitionDxe.

o Cached kernel images often do not contain family drivers for networking (IONetworkingFamily) or audio
(I0AudioFamily) requiring the use of Force loading in order to inject networking or audio drivers.

12.1.2 macOS 10.7
o All previous issues apply.
 SSSE3 support (not to be confused with SSE3 support) is a hard requirement for macOS 10.7 kernel.

e Many kexts, including Lilu when 32-bit kernel is used and a lot of Lilu plugins, are unsupported on macOS 10.7
and older as they require newer kernel APIs; which are not part of the macOS 10.7 SDK.

e Prior to macOS 10.8 KASLR sliding is not supported, which will result in memory allocation failures on firmware
that utilise lower memory for their own purposes. Refer to jacidanthera/bugtracker#1125| for tracking.

12.1.3 macOS 10.6
e All previous issues apply.

e SSSE3 support is a requirement for macOS 10.6 kernel with 64-bit userspace enabled. This limitation can mostly
be lifted by enabling the LegacyCommpage quirk.

o Last released installer images for macOS 10.6 are macOS 10.6.7 builds 10J3250 (for MacBookPro8,x) and
10J4139 (for iMac12,x), without Xcode). These images are limited to their target model identifiers and have no
-no_compat_check boot argument support. Modified images (with ACDT suffix) without model restrictions can
be found here, (MEGA Mirror), assuming macOS 10.6 is legally owned. Read DIGEST.txt for more details. Note
that these are the earliest tested versions of macOS 10.6 with OpenCore.

Model checking may also be erased by editing 0SInstall.mpkg with e.g. Flat Package Editor by making Distribution
script to always return true in hwbeModelCheck function. Since updating the only file in the image and not corrupting
other files can be difficult and may cause slow booting due to kernel cache date changes, it is recommended to script
image rebuilding as shown below:

#1/bin/bash

Original.dmg is original image, OSInstall.mpkg is patched package

mkdir RO

hdiutil mount Original.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RO
cp RO/.DS_Store DS_STORE

hdiutil detach RO -force

rm -rf RO

hdiutil convert Original.dmg -format UDRW -o ReadWrite.dmg

88

https://web.archive.org/web/20170705003629/https://support.apple.com/en-us/HT204319
https://web.archive.org/web/20170705003629/https://support.apple.com/en-us/HT204319
https://github.com/acidanthera/bugtracker/issues/1125
https://archive.org/details/10.6.7-10j3250-disk-images
https://mega.nz/folder/z5YUhYTb#gA_IRY5KMuYpnNCg7kR3ug

mkdir RW

xattr -c 0SInstall.mpkg

hdiutil mount ReadWrite.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RW
cp 0SInstall.mpkg RW/System/Installation/Packages/0SInstall.mpkg

killall Finder fseventsd

rm -rf RW/.fseventsd

cp DS_STORE RW/.DS_Store

hdiutil detach RW -force

rm -rf DS_STORE RW

hdiutil convert ReadWrite.dmg -format UDZO -o ReadOnly.dmg

12.1.4 macOS 10.5

All previous issues apply.
This macOS version does not support x86_64 kernel and requires 1386 kernel extensions and patches.

This macOS version uses the first (V1) version of prelinkedkernel, which has kext symbol tables corrupted
by the kext tools. This nuance renders prelinkedkernel kext injection impossible in OpenCore. Mkext kext
injection will still work without noticeable performance drain and will be chosen automatically when KernelCache
is set to Auto.

Last released installer image for macOS 10.5 is macOS 10.5.7 build 933050 (for MacBookPro5,3). Unlike the
others, this image is not limited to the target model identifiers and can be used as is. The original 9J3050 image
can be found here (MEGA Mirror), assuming macOS 10.5 is legally owned. Read DIGEST.txt for more details.
Note that this is the earliest tested version of macOS 10.5 with OpenCore.

12.1.5 macOS 10.4

All previous issues apply.

This macOS version has a hard requirement to access all the optional packages on the second DVD disk installation
media, requiring either two disks or USB media installation.

Last released installer images for macOS 10.4 are macOS 10.4.10 builds 8R4061a (for MacBookPro3,1) and 8R4088
(for iMac7,1)). These images are limited to their target model identifiers as on newer macOS versions. Modified
8R4088 images (with ACDT suffix) without model restrictions can be found here (MEGA Mirror), assuming
macOS 10.4 is legally owned. Read DIGEST.txt for more details. Note that these are the earliest tested versions
of macOS 10.4 with OpenCore.

12.2 TUEFI Secure Boot

OpenCore is designed to provide a secure boot chain between firmware and operating system. On most x86 platforms
trusted loading is implemented via [UEFI Secure Boot model. Not only OpenCore fully supports this model, but it
also extends its capabilities to ensure sealed configuration via and provide trusted loading to the operating
systems using custom verification, such as[Apple Secure Boot] Proper secure boot chain requires several steps and
careful configuration of seleet—certain settings as explained below:

1.

Enable Apple Secure Boot by setting SecureBootModel to run macOS. Note, that not every macOS is compatible
with Apple Secure Boot and there are several other restrictions as explained in [Apple Secure Boot] section.

Disable DMG loading by setting Dmgloading to Disabled if users have concerns of loading old vulnerable DMG
recoveries. This is not required, but recommended. For the actual tradeoffs see the details in

section.

Make sure that APFS JumpStart functionality restricts the loading of old vulnerable drivers by setting MinDate
and MinVersion to 0. More details are provided in[APFS JumpStart]section. An alternative is to install apfs.efi
driver manually.

Make sure that Force driver loading is not needed and all the operating systems are still bootable.

Make sure that ScanPolicy restricts loading from undesired devices. It is a good idea to prohibit all removable
drivers or unknown filesystems.

89

https://archive.org/details/10.5.7-9-j-3050
https://mega.nz/folder/inRBTarD#zanf7fUbviwz3WHBU5xpCg
https://archive.org/details/10.4.10-8-r-4088-acdt
https://mega.nz/folder/D3ASzLzA#7sjYXE2X09f6aGjol_C7dg
https://en.wikipedia.org/wiki/UEFI_Secure_Boot

6. Sign all the installed drivers and tools with the private key. Do not sign tools that provide administrative access
to the computer, such as UEFI Shell.

7. Vault the configuration as explained section.

8. Sign all OpenCore binaries (BOOTX64.efi, BOOTIa32.efi, OpenCore.efi, custom launchers) used on this system
with the same private key.

9. Sign all third-party operating system (not made by Microsoft or Apple) bootloaders if needed. For Linux there is
an option to install Microsoft-signed Shim bootloader as explained on e.g. [Debian Wiki.

10. Enable UEFI Secure Boot in firmware preferences and install the certificate with a private key. Details on how to
generate a certificate can be found in various articles, such as this one, and are out of the scope of this document.
If Windows is needed one will also need to add the Microsoft Windows Production CA 2011. To launch option
ROMs or to use signed Linux drivers, Microsoft UEFI Driver Signing CA will also be needed.

11. Password-protect changing firmware settings to ensure that UEFI Secure Boot cannot be disabled without the
user’s knowledge.

12.3 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFI installations as well as systems partially supporting UEFI
boot, such as Windows 7, might work with some extra precautions. Things to consider:

o MBR (Master Boot Record) installations are legacy and will not be supported.

o All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

e macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround| for this, it is highly recommend not to rely on it and install properly.

e Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID.
Be aware that it may be invalid on old firmware, i.e., not random. If there still are issues, consider using HWID
or KMS38 license or making the use Custom UpdateSMBIOSMode. Other nuances of Windows activation are out
of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases Windows support software
from [Boot Campl|is required. For simplicity of the download process or when configuring an already installed Windows
version a third-party utility, Brigadier, can be used successfully. Note, that |7-Zip| may be downloaded and installed
prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. If there is a previous version of
Boot Camp installed it should be removed first by running msiexec /x BootCamp.msi command. BootCamp.msi file
is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, the rest may still have to be
addressed manually:

o To invert mouse wheel scroll direction F1ipFlopWheel must be set to 1 as explained on SuperUserl

e RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on

SuperUser| (this is usuatynet-neededtypically not required).

e To access Apple filesystems such as HFS+ and APFS, separate software may need to be installed. Some of the
known utilities are: Apple HFS+ driver (haek-workaround for Windows 10), HFSExplorer, MacDrive, Paragon
APFS, Paragon HFS+, TransMac, etc. Remember to never ever attempt to modify Apple file systems from
Windows as this often leads to irrecoverable data loss.

90

https://wiki.debian.org/SecureBoot
https://habr.com/en/post/273497
http://go.microsoft.com/fwlink/?LinkID=321192
http://go.microsoft.com/fwlink/?LinkId=321194
https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/post-24180079
http://www.catacombae.org/hfsexplorer

Why do I see Basic data partition in Boot Camp Startup Disk control panel?

Boot Camp control panel uses GPT partition table to obtain each boot option name. After installing Windows
separately the partition will have to be relabelled manually. This can be done with many utilities including open-source
gdisk| utility. Reference example:

PS C:\gdisk> .\gdisk64.exe \\.\physicaldriveO
GPT fdisk (gdisk) version 1.0.4

Command (7 for help): p

Disk \\.\physicaldrive0O: 419430400 sectors, 200.0 GiB

Sector size (logical): 512 bytes

Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries

Total free space is 4029 sectors (2.0 MiB)

Number Start (sector) End (sector) Size Code Name
1 2048 1023999 499.0 MiB 2700 Basic data partition
2 1024000 1226751 99.0 MiB EF0O0 EFI system partition
3 1226752 1259519 16.0 MiB 0CO1 Microsoft reserved ...
4 1259520 419428351 199.4 GiB 0700 Basic data partition

Command (7 for help): c
Partition number (1-4): 4
Enter name: BOOTCAMP

Command (7 for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!
Do you want to proceed? (Y/N): Y

OK; writing new GUID partition table (GPT) to \\.\physicaldriveO.

Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.

Listing 4: Relabeling Windows volume

How to choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTFS support, such as NTFS-3G, Paragon NTFS, Tuxera NTFS or |Seagate Paragon
Driver break-disrupt certain macOS functionality, including [Startup Disk preference pane normally used for operating
system selection. While the recommended option remains not to use such drivers as they commonly corrupt the
filesystem, and prefer the driver bundled with macOS with optional write support (command or GUI), there still exist
vendor-specific workarounds for their products: Tuxera), [Paragon) etc.

12.4 Debugging

Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or
DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with
GDB or IDA Pro is also available. For GDB check |OpenCore Debug page. For IDA Pro, version 7.3 or newer is needed,
and Debugging the XNU Kernel with IDA Pro/ may also help.

To obtain the log during boot serial port debugging can be used. Serial port debugging is enabled in Target, e.g. 0xB
for onscreen with serial. To initialise serial within OpenCore use SerialInit configuration option. For macOS the
best choice is CP2102-based UART devices. Connect motherboard TX to USB UART RX, and motherboard GND to USB
UART GND. Use screen utility to get the output, or download GUI software, such as|CoolTerml

91

https://sourceforge.net/projects/gptfdisk
https://www.tuxera.com/community/open-source-ntfs-3g
https://www.seagate.com/support/software/paragon
https://www.seagate.com/support/software/paragon
https://support.apple.com/HT202796
http://osxdaily.com/2013/10/02/enable-ntfs-write-support-mac-os-x
https://mounty.app
https://www.tuxera.com/products/tuxera-ntfs-for-mac/faq
https://kb.paragon-software.com/article/6604
https://github.com/acidanthera/OpenCorePkg/tree/master/Debug
https://www.hex-rays.com/products/ida/support/tutorials/index.shtml
https://freeware.the-meiers.org

Note: On several motherboards (and possibly USB UART dongles) PIN naming may be incorrect. It is very common
to have GND swapped with RX, thus, motherboard “TX” must be connected to USB UART GND, and motherboard “GND”
to USB UART RX.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output
corruption. To additionally enable XNU kernel serial output debug=0x8 boot argument is needed.

12.5 Tips and Tricks
1. How to debug boot failure?

Normally it is enough to obtain the actual error message. For this ensure that:

« A DEBUG or NOOPT version of OpenCore is used.

o Logging is enabled (1) and shown onscreen (2): Misc — Debug — Target = 3.

o Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO
(0x00000040) levels are visible onscreen: Misc — Debug — DisplayLevel = 0x80000042.

o Critical error messages, such as DEBUG_ERROR, stop booting: Misc — Security — HaltLevel = 0x80000000.

o Watch Dog is disabled to prevent automatic reboot: Misc — Debug — DisableWatchDog = true.

o Boot Picker (entry selector) is enabled: Misc — Boot — ShowPicker = true.

If there is no obvious error, check the available haeks—in-workarounds in the Quirks sections one by one. For
early boot troubleshooting, for instance, when OpenCore menu does not appear, using UEFI Shell (bundled
with OpenCore) may help to see early debug messages.

2. How to debug macOS boot failure?

¢ Refer to boot-args values such as debug=0x100, keepsyms=1, -v, and similar.

¢ Do not forget about AppleDebug and ApplePanic properties.

e Take care of Booter, Kernel, and UEFI quirks.

o Consider using serial port to inspect early kernel boot failures. For this debug=0x108, serial=5, and
msgbuf=1048576 boot arguments are needed. Refer to the patches in Sample.plist when dying before serial
init.

o Always read the logs carefully.

3. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

4. How to choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI
Setup, with the macOS [Startup Disk| preference, or the Windows Boot Camp| Control Panel. Since choosing
OpenCore’s BOOTx64 .EFI as a primary boot option limits this functionality in addition to several types of firmware
deleting incompatible boot options, potentially including those created by macOS, users are strongly encouraged
to use the RequestBootVarRouting quirk, which will preserve the selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

5. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32

partition with OpenCore. Load OpenCore BootPicker-the OpenCore picker and choose the entry, it will have a
(dmg) suffix. Custom name may be created by providing .contentDetails file.

To download recovery online macrecovery.py can be used.

For offline installation refer to How to create a bootable installer for macOS|article. Apart from App Store and
softwareupdate utility there also are third-party utilities to download an offline image.

6. Why do online recovery images (*.dmg) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.

92

https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macrecovery/macrecovery.py
https://support.apple.com/HT201372
https://github.com/corpnewt/gibMacOS

7. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
on MacRumors.coml

8. Why de-must Find&Replace patches must-be equal in lengthsize?

For machine code (x86 code) it is not possible to do differently sized replacements due to relative addressing. For
ACPI code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More
detailed explanation can be found on |AppleLife.rul or in the ACPI section of this document.

9. How can I decide which Booter quirks to use?

These quirks originate from AptioMemoryFix driver but provide a wider set of changes specific to modern
systems. Note, that OpenRuntime driver is required for most configurations. To get a configuration similar to
AptioMemoryFix the following set of quirks should be enabled:

o ProvideConsoleGop (UEFI quirk)
e AvoidRuntimeDefrag

e DiscardHibernateMap

e EnableSafeModeSlide

e EnableWriteUnprotector

e ForceExitBootServices

e ProtectMemoryRegions

e ProvideCustomSlide

¢ RebuildAppleMemoryMap

e SetupVirtualMap

However, as of today, such set is strongly discouraged as some of these quirks are not necessary to be enabled or
need additional quirks. For example, DevirtualiseMmio and ProtectUefiServices are often required, while
DiscardHibernateMap and ForceExitBootServices are rarely necessary.

Unfortunately for some quirks such as RebuildAppleMemoryMap, EnableWriteUnprotector, ProtectMemoryRegions,
SetupVirtualMap, and SyncRuntimePermissions there is no definite approach even on similar systems, so trying

all their combinations may be required for optimal setup. Refer to individual quirk descriptions in this document

for more details.

93

https://forums.macrumors.com/threads/opencore-on-the-mac-pro.2207814
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Introduction
	Generic Terms

	Configuration
	Configuration Terms
	Configuration Processing
	Configuration Structure

	Setup
	Directory Structure
	Installation and Upgrade
	Contribution
	Coding conventions
	Debugging

	ACPI
	Introduction
	Properties
	Add Properties
	Delete Properties
	Patch Properties
	Quirks Properties

	Booter
	Introduction
	Properties
	MmioWhitelist Properties
	Patch Properties
	Quirks Properties

	DeviceProperties
	Introduction
	Properties
	Common Properties

	Kernel
	Introduction
	Properties
	Add Properties
	Block Properties
	Emulate Properties
	Force Properties
	Patch Properties
	Quirks Properties
	Scheme Properties

	Misc
	Introduction
	Properties
	Boot Properties
	Debug Properties
	Security Properties
	Entry Properties

	NVRAM
	Introduction
	Properties
	Mandatory Variables
	Recommended Variables
	Other Variables

	PlatformInfo
	Properties
	Generic Properties
	DataHub Properties
	Memory Properties
	PlatformNVRAM Properties
	SMBIOS Properties

	UEFI
	Introduction
	Drivers
	Tools and Applications
	OpenCanopy
	OpenRuntime
	Properties
	APFS Properties
	Audio Properties
	Input Properties
	Output Properties
	ProtocolOverrides Properties
	Quirks Properties
	ReservedMemory Properties

	Troubleshooting
	Legacy Apple OS
	UEFI Secure Boot
	Windows support
	Debugging
	Tips and Tricks

