OpenCore

Reference Manual (0.8:6.7)
[2022.12.06]

Copyright ©2018-2022 vit9696

Note: This option may not work well with the System text renderer. Setting a background different from black
could help with testing GOP functionality.

. HibernateMode

Type: plist string

Failsafe: None

Description: Hibernation detection mode. The following modes are supported:

e None — Ignore hibernation state.

e Auto — Use RTC and NVRAM detection.
e RTC — Use RTC detection.

¢ NVRAM — Use NVRAM detection.

Note: If the firmware can handle hibernation itself (valid for Mac EFI firmware), then None should be specified to
hand-off hibernation state as is to OpenCore.

- HibernateSkipsPicker
Type: plist boolean
Description: Do not show picker if waking from macOS hibernation.

¢ Only supports macOS hibernation wake, Windows and Linux are currently out of scope.

¢ Should only be used on systems with reliable hibernation wake in macOS, otherwise users may not be able
to visually see boot loops that may occur.

o Highly recommended to pair this option with PollAppleHotKeys, allows to enter picker in case of issues

« Visual indication for hibernation wake is currently out of scope.

. HideAuxiliary

Type: plist boolean

Failsafe: false

Description: Set to true to hide auxiliary entries from the picker menu.

An entry is considered auxiliary when at least one of the following applies:

e Entry is macOS recovery.

o Entry is macOS Time Machine.

o Entry is explicitly marked as Auxiliary.
o Entry is system (e.g. Reset NVRAM).

To display all entries, the picker menu can be reloaded into “Extended Mode” by pressing the Spacebar key.
Hiding auxiliary entries may increase boot performance on multi-disk systems.

. LauncherQOption

Type: plist string

Failsafe: Disabled

Description: Register the launcher option in the firmware preferences for persistence.

Valid values:

e Disabled — do nothing.
e Full — create or update the top priority boot option in UEFI variable storage at bootloader startup.
— For this option to work, RequestBootVarRouting is required to be enabled.
e Short — create a short boot option instead of a complete one.
— This variant is useful for some older types of firmware, typically from Insyde, that are unable to manage
full device paths.
e System — create no boot option but assume specified custom option is blessed.
— This variant is useful when relying on ForceBooterSignature quirk and OpenCore launcher path
management happens through bless utilities without involving OpenCore.

43

12.

13.

loaded and connected first. Configuring the boot chime and adding this longer additional delay can also be useful
in systems where fast boot time and/or slow monitor signal synchronisation may cause the boot logo not to be
shown at all on some boots or reboots.

Timeout

Type: plist integer, 32 bit

Failsafe: 0

Description: Timeout in seconds in the OpenCore picker before automatic booting of the default boot entry.
Set to 0 to disable.

PickerMode

Type: plist string

Failsafe: Builtin

Description: Choose picker used for boot management.

PickerMode describes the underlying boot management with an optional user interface responsible for handling
boot options.

The following values are supported:

e Builtin — boot management is handled by OpenCore, a simple text-only user interface is used.

e External — an external boot management protocol is used if available. Otherwise, the Builtin mode is
used.

e Apple — Apple boot management is used if available. Otherwise, the Builtin mode is used.

Upon success, the External mode may entirely disable all boot management in OpenCore except for policy
enforcement. In the Apple mode, it may additionally bypass policy enforcement. Refer to the plugin
for an example of a custom user interface.

The OpenCore built-in picker contains a set of actions chosen during the boot process. The list of supported
actions is similar to Apple BDS and typically can be accessed by holding action hotkeys during the boot
process.

The following actions are currently considered:

e Default — this is the default option, and it lets the built-in OpenCore picker load the default boot option
as specified in the [Startup Disk| preference pane.

e ShowPicker — this option forces the OpenCore picker to be displayed. This can typically be achieved by
holding the OPT key during boot. Setting ShowPicker to true will make ShowPicker the default option.

e BootApple — this options performs booting to the first Apple operating system found unless the chosen
default operating system is one from Apple. Hold the X key down to choose this option.

e BootAppleRecovery — this option performs booting into the Apple operating system recovery partition.
This is either that related to the default chosen operating system, or first one found when the chosen
default operating system is not from Apple or does not have a recovery partition. Hold the CMD+R hotkey
combination down to choose this option.

Note 1: On non-Apple firmware KeySupport, OpenUsbKbDxe, or similar drivers are required for key handling.
However, not all of the key handling functions can be implemented on several types of firmware.

Note 2: In addition to OPT, OpenCore supports using both the Escape and Zero keys to enter the OpenCore
picker when ShowPicker is disabled. Escape exists to support co-existence with the Apple picker (including
OpenCore Apple picker mode) and to support firmware that fails to report held OPT key, as on some PS/2
keyboards. In addition, Zero is provided to support systems on which Escape is already assigned to some other
pre-boot firmware feature. In systems which do not require KeySupport, pressing and holding one of these keys
from after power on until the picker appears should always be successful. The same should apply when using
KeySupport mode if it is correctly configured for the system, i.e. with a long enough KeyForgetThreshold. If
pressing and holding the key is not successful to reliably enter the picker, multiple repeated keypresses may be
tried instead.

Note 3: On Macs with problematic GOP, it may be difficult to aeeewﬁhe%pp}e—ptekefre bless 0 enCore if its bless
W The BootKicker utility can be

-used to work around this roblem 1f set up as a Tool in OpenCore (e.g. on a

CDROM w1th FulleramAccess enabled. It will launch the A icker, which allows selection of an 1tem to

47

https://support.apple.com/HT202796

OpenVariableRuntimeDxe* |OpenCore plugin|offering emulated NVRAM support. OpenDuet already includes this

Ps2KeyboardDxe™*

Ps2MouseDxe’*

OpenHfsPlus™

ResetNvramEntry*
ToggleSipEntry™®

UsbMouseDxe™*

XhciDxe™®

driver.

PS/2 keyboard driver from MdeModulePkg. OpenDuetPkg and some types of firmware
may not include this driver, but it is necessary for PS/2 keyboard to work. Note, unlike
OpenUsbKbDxe this driver has no AppleKeyMapAggregator support and thus requires
KeySupport to be enabled.

PS/2 mouse driver from MdeModulePkg. Some very old laptop firmware may not include
this driver but it is necessary for the touchpad to work in UEFI graphical interfaces
such as OpenCanopy.

HF'S file system driver with bless support. This driver is an alternative to a closed source
HfsPlus driver commonly found in Apple firmware. While it is feature complete, it is
approximately 3 times slower and is yet to undergo a security audit.

[OpenCore plugin| implementing 0C_BOOT_ENTRY_PROTOCOL to add a configurable Reset
NVRAM entry to the boot picker menu.

[OpenCore plugin|implementing 0C_BOOT_ENTRY_PROTOCOL to add a configurable Toggle
SIP entry to the boot picker menu.

USB mouse driver from MdeModulePkg. Some virtual machine firmware such as OVMF
may not include this driver but it is necessary for the mouse to work in UEFT graphical
interfaces such as OpenCanopy.

XHCI USB controller support driver from MdeModulePkg. This driver is included in
most types of firmware starting with the Sandy Bridge generation. For earlier firmware
or legacy systems, it may be used to support external USB 3.0 PCI cards.

Driver marked with * are bundled with OpenCore. To compile the drivers from UDK (EDK II) the same command
used for OpenCore compilation can be taken, but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK

cd UDK
source edksetup.sh
make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc
build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

11.3 Tools and Applications

Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below. While some
tools can be launched from within OpenCore (Refer to the subsection for more details), most should be run
separately either directly or from Shell.

To boot into OpenShell or any other tool directly save OpenShell.efi under the name of EFI\BOOT\BOOTX64.EFI on
a FAT32 partition. It is typically unimportant whether the partition scheme is GPT or MBR.

While the previous approach works both on Macs and other computers, an alternative Mac-only approach to bless the
tool on an HFS+ or APFS volume:

sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
--folder /Volumes/VOLNAME/DIR/ --setBoot

Listing 3: Blessing tool

Note 1: /System/Library/CoreServices/BridgeVersion.bin should be copied to /Volumes/VOLNAME/DIR.
Note 2: To be able to use the bless command, [disabling System Integrity Protection is necessary.
Note 3: To be able to boot Secure Boot, might be disabled if present.

Some of the known tools are listed below (builtin tools are marked with *):

81

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://support.apple.com/HT208330

Failsafe: false
Description: Enable AVX vector acceleration of SHA-512 and SHA-384 hashing algorithms.

Note: This option may cause issues on certain laptop firmwares, including Lenovo.

. EnableVmx

Type: plist boolean

Failsafe: false

Description: Enable Intel virtual machine extensions.

Note: Required to allow virtualization in Windows on some Mac hardware. VMX is enabled or disabled and
locked by BIOS before OpenCore starts on most firmware. Use BIOS to enable virtualization where possible.

. DisableSecurityPolicy

Type: plist boolean

Failsafe: false

Description: Disable platform security policy.

Note: This setting disables various security features of the firmware, defeating the purpose of any kind of Secure
Boot. Do NOT enable if using UEFI Secure Boot.

. ExitBootServicesDelay

Type: plist integer

Failsafe: 0

Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very rough workaround to circumvent the Still waiting for root device message on some APTIO
IV firmware (ASUS Z87-Pro) particularly when using FileVault 2. It appears that for some reason, they execute
code in parallel to EXIT_BOOT_SERVICES, which results in the SATA controller being inaccessible from macOS. A
better approach is required and Acidanthera is open to suggestions. Expect 3 to 5 seconds to be adequate when
this quirk is needed.

. ForceOcWriteFlash

Type: plist boolean

Failsafe: false

Description: Enables writing to flash memory for all OpenCore-managed NVRAM system variables.

Note: This value should be disabled on most types of firmware but is left configurable to account for firmware
that may have issues with volatile variable storage overflows or similar. Boot issues across multiple OSes can be
observed on e.g. Lenovo Thinkpad T430 and T530 without this quirk. Apple variables related to Secure Boot
and hibernation are exempt from this for security reasons. Furthermore, some OpenCore variables are exempt for
different reasons, such as the boot log due to an available user option, and the TSC frequency due to timing
issues. When toggling this option, a NVRAM reset may be required to ensure full functionality.

. ForgeUefiSupport

Type: plist boolean

Failsafe: false

Description: Implement partial UEFI 2.x support on EFI 1.x firmware.

This setting allows running some software written for UEFI 2.x firmwarelike-, such as NVIDIA GOP Option
ROMs, on hardware with older EFI 1.x firmware like-(e.g. MacPro5,1).

. IgnoreInvalidFlexRatio

Type: plist boolean

Failsafe: false

Description: Some types of firmware (such as APTIO IV) may contain invalid values in the MSR_FLEX_RATIO
(0x194) MSR register. These values may cause macOS boot failures on Intel platforms.

Note: While the option is not expected to harm unaffected firmware, its use is recommended only when specifically
required.

. ReleaseUsbOwnership
Type: plist boolean
Failsafe: false

107

Note: On several motherboards (and possibly USB UART dongles) PIN naming may be incorrect. It is very common
to have GND swapped with RX, thus, motherboard “TX” must be connected to USB UART GND, and motherboard “GND”
to USB UART RX.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output
corruption. To additionally enable XNU kernel serial output debug=0x8 boot argument is needed.

12.5 Tips and Tricks
1. How do I debug boot failures?
Obtaining the actual error message is usually adequate. For this, ensure that:

e A DEBUG or NOOPT version of OpenCore is used.

o Logging is enabled (1) and shown onscreen (2): Misc — Debug — Target = 3.

o Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO
(0x00000040) levels are visible onscreen: Misc — Debug — DisplayLevel = 0x80000042.

o Critical error messages, such as DEBUG_ERROR, stop booting: Misc — Security — HaltLevel = 0x80000000.

o Watch Dog is disabled to prevent automatic reboot: Misc — Debug — DisableWatchDog = true.

o Boot Picker (entry selector) is enabled: Misc — Boot — ShowPicker = true.

If there is no obvious error, check the available workarounds in the Quirks sections one by one. For early boot
troubleshooting, for instance, when OpenCore menu does not appear, using UEFI Shell (bundled with OpenCore)
may help to see early debug messages.

2. How do I debug macOS boot failures?

e Refer to boot-args values such as debug=0x100, keepsyms=1, -v, and similar.

¢ Do not forget about AppleDebug and ApplePanic properties.

e For macOS to correctly recognise and set up serial ports, the CustomPciSerialDevice quirk may be enabled
when a PCI serial port card is installed.

e Take care of Booter, Kernel, and UEFI quirks.

¢ Consider using serial port to inspect early kernel boot failures. For this debug=0x108, serial=>5, and
msgbuf=1048576 boot arguments are needed. Refer to the patches in Sample.plist when dying before serial
init.

e Always read the logs carefully.

3. How do I customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

4. How do I choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI
Setup, with the macOS Startup Disk| preference, or the Windows |Boot Camp Control Panel. Since choosing
OpenCore’s BOOTx64.EFI as a primary boot option limits this functionality in addition to several types of firmware
deleting incompatible boot options, potentially including those created by macOS, users are strongly encouraged
to use the RequestBootVarRouting quirk, which will preserve the selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

5. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load the OpenCore picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online macrecovery.py can be used.

For offline installation refer to How to create a bootable installer for macOS article. Apart from App Store and
softwareupdate utility there also are third-party utilities| to download an offline image.

6. Why do online recovery images (*.dmg) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.

115

https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macrecovery/macrecovery.py
https://support.apple.com/HT201372
https://github.com/corpnewt/gibMacOS

7. Can I use this on Apple hardware or virtual machines?

SurerYes. Virtual machines and most relatively modern Mac modelsméwﬂgmm MaecProdllacPro3, land
virtual-machines-, are fully supported. ; 5 ails While specific detail
relevant to Mac hardware is often limited, some ongoing instructions can be found on MacRumors.com.

8. Why must Find&Replace patches be equal in size?

For machine code (x86 code) it is not possible to do differently sized replacements due to relative addressing. For
ACPI code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More
detailed explanation can be found on |AppleLife.rul or in the ACPI section of this document.

9. How can I decide which Booter quirks to use?

These quirks originate from AptioMemoryFix driver but provide a wider set of changes specific to modern
systems. Note, that OpenRuntime driver is required for most configurations. To get a configuration similar to
AptioMemoryFix the following set of quirks should be enabled:

o ProvideConsoleGop (UEFI quirk)
e AvoidRuntimeDefrag

e DiscardHibernateMap

e EnableSafeModeSlide

e EnableWriteUnprotector

e ForceExitBootServices

e ProtectMemoryRegions

e ProvideCustomSlide

¢ RebuildAppleMemoryMap

e SetupVirtualMap

However, as of today, such set is strongly discouraged as some of these quirks are not necessary to be enabled or
need additional quirks. For example, DevirtualiseMmio and ProtectUefiServices are often required, while
DiscardHibernateMap and ForceExitBootServices are rarely necessary.

Unfortunately for some quirks such as RebuildAppleMemoryMap, EnableWriteUnprotector, ProtectMemoryRegions,
SetupVirtualMap, and SyncRuntimePermissions there is no definite approach even on similar systems, so trying

all their combinations may be required for optimal setup. Refer to individual quirk descriptions in this document

for details.

116

https://forums.macrumors.com/threads/2207814
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Tools and Applications
	Tips and Tricks

